Zero Sum Games

Motivating example: changing Rock Paper Scissors

If we modify the game of Rock Paper Scissora to add a single new strategy “Spock”:

  • Spock smashes Scissors and Rock.

  • Paper disproves Spock.

The other modification is that the game is no longer symmetric: only the row player can use the Well.

The mathematical representation of this game is given by:

\[\begin{split}A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1\\ -1 & 1 & 0\\ 1 & -1 & 1 \end{pmatrix}\end{split}\]

Is there a way that the Row player can play that guarantees a particular expected proportion of wins?

Optimising worst case outcomes

The value of a game

Formulation of the linear program

In a Zero Sum Game, given a row player payoff matrix \(A\) with \(m\) rows and \(n\) columns, the following linear programme will give a strategy for the row player that ensures the best possible utility as well as the value of the game:

\[\max_{x\in\mathbb{R}^{(m + 1)\times 1}} cx\]

Subject to:

\[\begin{split}\begin{align} M_{\text{ub}}x &\leq b_{\text{ub}} \\ M_{\text{eq}}x &= b_{\text{eq}} \\ x_i &\geq 0&&\text{ for }i\leq m \end{align}\end{split}\]

Where the parameters of the linear programme are defined by:

\[\begin{split}\begin{align} c &= (\underbrace{0, \dots, 0}_{m}, 1) && c\in\{0, 1\}^{1 \times (m + 1)}\\ M_{\text{ub}} &= \begin{pmatrix}(-A^T)_{11}&\dots&(-A^T)_{1m}&1\\ \vdots &\ddots&\vdots &1\\ (-A^T)_{n1}&\dots&(-A^T)_{nm}&1\end{pmatrix} && M\in\mathbb{R}^{n\times (m + 1)}\\ b_{\text{ub}} &= (\underbrace{0, \dots, 0}_{n})^T && b_{\text{ub}}\in\{0\}^{n\times 1}\\ M_{\text{eq}} &= (\underbrace{1, \dots, 1}_{m}, 0) && M_{\text{eq}}\in\{0, 1\}^{1\times(m + 1)}\\ b_{\text{eq}} &= 1 \\ \end{align}\end{split}\]

The minimax theorem

Using Nashpy

See Use the minimax theorem for guidance of how to use Nashpy to find the Nash equilibria of Zero sum games using the mini max theorem.