Source code for nashpy.game

"""A class for a normal form game"""
import numpy as np

from .algorithms.lemke_howson import lemke_howson
from .algorithms.support_enumeration import support_enumeration
from .algorithms.vertex_enumeration import vertex_enumeration
from .learning.fictitious_play import fictitious_play
from .learning.replicator_dynamics import (
    asymmetric_replicator_dynamics,
    replicator_dynamics,
)
from .learning.stochastic_fictitious_play import stochastic_fictitious_play


[docs]class Game: """ A class for a normal form game. Parameters ---------- - A, B: 2 dimensional list/arrays representing the payoff matrices for non zero sum games. - A: 2 dimensional list/array representing the payoff matrix for a zero sum game. """ def __init__(self, *args): if len(args) == 2: if (not len(args[0]) == len(args[1])) or ( not len(args[0][0]) == len(args[1][0]) ): raise ValueError("Unequal dimensions for matrices A and B") self.payoff_matrices = tuple([np.asarray(m) for m in args]) if len(args) == 1: self.payoff_matrices = np.asarray(args[0]), -np.asarray(args[0]) self.zero_sum = np.array_equal( self.payoff_matrices[0], -self.payoff_matrices[1] ) def __repr__(self): if self.zero_sum: tpe = "Zero sum" else: tpe = "Bi matrix" return """{} game with payoff matrices: Row player: {} Column player: {}""".format( tpe, *self.payoff_matrices ) def __getitem__(self, key): row_strategy, column_strategy = key return np.array( [ np.dot(row_strategy, np.dot(m, column_strategy)) for m in self.payoff_matrices ] )
[docs] def vertex_enumeration(self): """ Obtain the Nash equilibria using enumeration of the vertices of the best response polytopes. Algorithm implemented here is Algorithm 3.5 of [Nisan2007]_. 1. Build best responses polytopes of both players 2. For each vertex pair of both polytopes 3. Check if pair is fully labelled 4. Return the normalised pair Returns ------- equilibria: A generator. """ return vertex_enumeration(*self.payoff_matrices)
[docs] def support_enumeration(self, non_degenerate=False, tol=10 ** -16): """ Obtain the Nash equilibria using support enumeration. Algorithm implemented here is Algorithm 3.4 of [Nisan2007]_. 1. For each k in 1...min(size of strategy sets) 2. For each I,J supports of size k 3. Solve indifference conditions 4. Check that have Nash Equilibrium. Returns ------- equilibria: A generator. """ return support_enumeration( *self.payoff_matrices, non_degenerate=non_degenerate, tol=tol )
[docs] def lemke_howson_enumeration(self): """ Obtain Nash equilibria for all possible starting dropped labels using the lemke howson algorithm. See `Game.lemke_howson` for more information. Note: this is not guaranteed to find all equilibria. Returns ------- equilibria: A generator """ for label in range(sum(self.payoff_matrices[0].shape)): yield self.lemke_howson(initial_dropped_label=label)
[docs] def lemke_howson(self, initial_dropped_label): """ Obtain the Nash equilibria using the Lemke Howson algorithm implemented using integer pivoting. Algorithm implemented here is Algorithm 3.6 of [Nisan2007]_. 1. Start at the artificial equilibrium (which is fully labeled) 2. Choose an initial label to drop and move in the polytope for which the vertex has that label to the edge that does not share that label. (This is implemented using integer pivoting) 3. A label will now be duplicated in the other polytope, drop it in a similar way. 4. Repeat steps 2 and 3 until have Nash Equilibrium. Parameters ---------- initial_dropped_label: int Returns ------- equilibria: A tuple. """ return lemke_howson( *self.payoff_matrices, initial_dropped_label=initial_dropped_label )
[docs] def fictitious_play(self, iterations, play_counts=None): """ Return a given sequence of actions through fictitious play. The implementation corresponds to the description of chapter 2 of [Fudenberg1998]_. 1. Players have a belief of the strategy of the other player: a vector representing the number of times the player has chosen a given strategy. 2. Players choose a best response to the belief. 3. Players update their belief based on the latest choice of the opponent. Parameters ---------- iterations: int play_counts: iterator Returns ------- plays: A generator """ return fictitious_play( *self.payoff_matrices, iterations=iterations, play_counts=play_counts )
[docs] def stochastic_fictitious_play( self, iterations, play_counts=None, etha=10 ** -1, epsilon_bar=10 ** -2 ): """Return a given sequence of actions and mixed strategies through stochastic fictitious play. The implementation corresponds to the description given in [Hofbauer2002]_. Parameters ---------- iterations: int play_counts: iterator etha: float epsilon_bar: float Returns ------- plays: A generator """ return stochastic_fictitious_play( *self.payoff_matrices, iterations=iterations, play_counts=play_counts, etha=etha, epsilon_bar=epsilon_bar )
[docs] def replicator_dynamics(self, y0=None, timepoints=None): """ Implement replicator dynamics Return an array showing probability of each strategy being played over time. The total population is constant. Strategies can either stay constant if equilibria is achieved, replicate or die. Parameters ---------- A: nxm array, where n=m y0: array timepoints: array Returns ------- xs: array """ A, _ = self.payoff_matrices return replicator_dynamics(A=A, y0=y0, timepoints=timepoints)
[docs] def asymmetric_replicator_dynamics(self, x0=None, y0=None, timepoints=None): """ Returns two arrays, corresponding to the two players, showing the probability of each strategy being played over time using the asymmetric replicator dynamics algorithm. Parameters ---------- x0 : array, optional y0 : array, optional timepoints : array, optional Returns ------- xs1 : array xs2 : array """ A, B = self.payoff_matrices return asymmetric_replicator_dynamics( A=A, B=B, x0=x0, y0=y0, timepoints=timepoints )