.. _fictitious-play: Fictitious play ================ The fictitious play algorithm implemented in :code:`Nashpy` is based on the one described in [Fudenberg1998]_. The algorithm is as follows: For a game :math:`(A, B)\in\mathbb{R}^{m\times n}` define :math:`\kappa_t^{i}:S^{-1}\to\mathbb{N}` to be a function that in a given time interval :math:`t` for a player :math:`i` maps a strategy :math:`s` from the opponent's strategy space :math:`S^{-1}` to a number of total times the opponent has played :math:`s`. Thus: .. math:: \kappa_t^{i}(s^{-i}) = \kappa_{t-1}(s^{-i}) + \begin{cases} 1,& \text{ if }s^{-i}_{t-1}=s^{-i}\\ 0,& \text{ otherwise} \end{cases} In practice: .. math:: \kappa_t^{1} \in \mathbb{Z}^{n}\qquad \kappa_t^{2} \in \mathbb{Z} ^ {m} At stage :math:`t`, each player assumes their opponent is playing a mixed strategy based on :math:`\kappa_{t-1}`: .. math:: \frac{\kappa_{t-1}}{\sum\kappa_{t-1}} They calculate the expected value of each strategy, which is equivalent to: .. math:: s_{t}^{1}\in\text{argmax}_{s\in S_1}A\kappa_{t-1}^{2}\qquad s_{t}^{2}\in\text{argmax}_{s\in S_2}B^T\kappa_{t-1}^{1} In the case of multiple best responses, a random choice is made. Discussion ---------- Note that this algorithm will not always converge and sometimes it depends on the form of the game. For example:: >>> import numpy as np >>> import nashpy as nash >>> A = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]) >>> B = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) >>> game = nash.Game(A, B) >>> iterations = 10000 >>> np.random.seed(0) >>> play_counts = tuple(game.fictitious_play(iterations=iterations)) >>> play_counts[-1] [array([5464., 1436., 3100.]), array([2111., 4550., 3339.])] We can visualise the lack of convergence:: >>> import matplotlib.pyplot as plt >>> plt.figure() # doctest: +SKIP >>> probabilities = [row_play_counts / np.sum(row_play_counts) for row_play_counts, col_play_counts in play_counts] >>> for number, strategy in enumerate(zip(*probabilities)): ... plt.plot(strategy, label=f"$s_{number}$") # doctest: +SKIP >>> plt.xlabel("Iteration") # doctest: +SKIP >>> plt.ylabel("Probability") # doctest: +SKIP >>> plt.title("Actions taken by row player") # doctest: +SKIP >>> plt.legend() # doctest: +SKIP .. image:: /_static/learning/fictitious_play/divergent_example/main.svg If we modify the game slightly we obtain a different outcome:: >>> A = np.array([[1 / 2, 1, 0], [0, 1 / 2, 1], [1, 0, 1 / 2]]) >>> B = np.array([[1 / 2, 0, 1], [1, 1 / 2, 0], [0, 1, 1 / 2]]) >>> game = nash.Game(A, B) >>> np.random.seed(0) >>> play_counts = tuple(game.fictitious_play(iterations=iterations)) >>> play_counts[-1] [array([3290., 3320., 3390.]), array([3356., 3361., 3283.])] With a clear convergence now visible:: >>> import matplotlib.pyplot as plt >>> plt.figure() # doctest: +SKIP >>> probabilities = [row_play_counts / np.sum(row_play_counts) for row_play_counts, col_play_counts in play_counts] >>> for number, strategy in enumerate(zip(*probabilities)): ... plt.plot(strategy, label=f"$s_{number}$") # doctest: +SKIP >>> plt.xlabel("Iteration") # doctest: +SKIP >>> plt.ylabel("Probability") # doctest: +SKIP >>> plt.title("Actions taken by row player") # doctest: +SKIP >>> plt.legend() # doctest: +SKIP .. image:: /_static/learning/fictitious_play/convergent_example/main.svg