

    
      
          
            
  
Welcome to Nashpy’s documentation!

This is a Python library used for the computation of equilibria in 2 player
strategic form games.

This is a library with simple dependencies (it only requires numpy and
scipy) so that it is pip installable.
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Tutorial: building and finding the equilibrium for  a simple game


Introduction to game theory

Game theory is the study of strategic interactions between rational agents.
Simply put that means that it’s the study of interactions when the involved
parties try and do what is best from their point of view.

As an example let us consider Rock Paper Scissors [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors]. This is a
common game where two players choose one of 3 options (in game theory we call
these strategies):


	Rock


	Paper


	Scissors




The winner is decided according to the following:


	Rock crushes scissors


	Paper covers Rock


	Scissors cuts paper




We can represent this mathematically using a 3 by 3 matrix:


\[\begin{split}A =
\begin{pmatrix}
     0 & -1 &  1\\
     1 &  0 & -1\\
    -1 &  1 &  0
\end{pmatrix}\end{split}\]

The matrix \(A_{ij}\) shows the utility to the player controlling the rows
when they play the \(i\) th row and their opponent (the column player) plays
the \(j\) th column. For example, if the row player played Scissors (the 3rd
strategy) and the column player played Paper (the 2nd strategy) then the row
player gets: \(A_{32}=1\) because Scissors cuts Paper.

A recommend text book on Game Theory is [Maschler2013].




Installing Nashpy

We are going to study this game using Nashpy, first though we need to install
it. Nasphy requires the following things to be on your computer:


	Python 3.5 or greater;


	Scipy 0.19.0 or greater;


	Numpy 1.12.1 or greater.




Assuming you have those installed, to install Nashpy:


	On Mac OSX or linux open a terminal;


	On Windows open the Command prompt or similar




and type:

$ python -m pip install nashpy





If this does not work, you might not have Python or one of the other
dependencies. You might also have problems due to pip not being
recognised. To overcome these, using the Anaconda [https://www.continuum.io/downloads] distribution of Python
is recommended as it installs straightforwardly on all operating systems and
also includes the libraries needed to run Nashpy.




Creating a game

We can create this game using Nashpy:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> rps = nash.Game(A)
>>> rps
Zero sum game with payoff matrices:

Row player:
[[ 0 -1  1]
 [ 1  0 -1]
 [-1  1  0]]

Column player:
[[ 0  1 -1]
 [-1  0  1]
 [ 1 -1  0]]





The string representation of the game also contains some information. For
example, it is also showing the matrix that corresponds to the utility of the
column player. In this case that is just \(-A\) but that does not always
have to be the case.

We can in fact pass a pair of matrices to the game class to create the same
game:

>>> B = - A
>>> rps = nash.Game(A, B)
>>> rps
Zero sum game with payoff matrices:

Row player:
[[ 0 -1  1]
 [ 1  0 -1]
 [-1  1  0]]

Column player:
[[ 0  1 -1]
 [-1  0  1]
 [ 1 -1  0]]





We get the exact same game, if passed a single game, Nashpy will assume
that the game is a zero sum game: in other words the utilities of both players
are opposite.




Calculating the utility of a pair of strategies

If the row player played Scissors (the 3rd
strategy) and the column player played Paper (the 2nd strategy) then the row
player gets: \(A_{32}=1\) because Scissors cuts Paper.

A mathematical approach to representing a strategy is to consider a vector of
the size: the number of strategies. For example \(\sigma_r=(0, 0, 1)\) is
the row strategy where the row player always plays their third strategy.
Similarly \(\sigma_c=(0, 1, 0)\) is the strategy for the column player where
they always play their second strategy.

When we represent strategies like this we can get the utility to the row player
using the following linear algebraic expression:


\[\sigma_r A \sigma_c^T\]

Similarly, if \(B\) is the utility to the column player their utility is
given by:


\[\sigma_r B \sigma_c^T\]

We can use Nashpy to find these utilities:

>>> sigma_r = [0, 0, 1]
>>> sigma_c = [0, 1, 0]
>>> rps[sigma_r, sigma_c]
array([ 1, -1])





Players can of course choose to play randomly, in which case the utility
corresponds to the long term average. This is where our representation of
strategies and utility calculations becomes particularly useful. For example,
let us assume the column player decides to play Rock and Paper “randomly”. This
corresponds to \(\sigma_c=(1/2, 1/2, 0)\):

>>> sigma_c = [1 / 2, 1 / 2, 0]
>>> rps[sigma_r, sigma_c]
array([0., 0.])





The row player might then decide to change their strategy and “randomly” play
Paper and Scissors:

>>> sigma_r = [0, 1 / 2, 1 / 2]
>>> rps[sigma_r, sigma_c]
array([ 0.25, -0.25])





The column player would then probably deviate once more. Whether or not their is
a pair of strategies for both players at which they both no longer have a reason
to move is going to be answered in the next section.




Computing Nash equilibria

Nash equilibria is (in two player games) a pair of strategies at which both
players do not have an incentive to deviate. We can find these using
Nashpy:

>>> eqs = rps.support_enumeration()
>>> list(eqs)
[(array([0.333..., 0.333..., 0.333...]), array([0.333..., 0.333..., 0.333...]))]





Nash equilibria is an important concept as it allows to gain an initial
understanding of emergent behaviour in complex systems.




Learning in games

Nash equilibria are not always observed during non cooperative play: they
correspond to strategies at which no play has an incentive to move but that does
not necessarily imply that players can arrive at that equilibria naturally.

We can illustrate this using Nashpy:

>>> import numpy as np
>>> iterations = 100
>>> np.random.seed(0)
>>> play_counts = rps.fictitious_play(iterations=iterations)
>>> for row_play_count, column_play_count in play_counts:
...     print(row_play_count, column_play_count)
[0 0 0] [0 0 0]
[1. 0. 0.] [0. 1. 0.]
...
[28. 39. 32.] [37. 26. 36.]
[29. 39. 32.] [37. 26. 37.]





Over time we can see the behaviour emerge, as the play counts can be normalised
to give strategy vectors. Note that these will not always converge.







            

          

      

      

    

  

    
      
          
            
  
How to

How to:



	Install Nashpy

	Create a game

	Calculate utilities

	Solve with support enumeration

	Solve with vertex enumeration

	Solve with Lemke Howson

	Use fictitious play

	Use stochastic fictitious play

	Use replicator dynamics









            

          

      

      

    

  

    
      
          
            
  
Install Nashpy

Nashpy currently requires Python 3.5 or above. To install from the
Python Package index (PyPi) run the following command:

$ python -m pip install nashpy





To install a development version from source:

$ git clone https://github.com/drvinceknight/Nashpy.git
$ cd nashpy
$ python setup.py develop









            

          

      

      

    

  

    
      
          
            
  
Create a game

A game in Nashpy is created by passing 1 or 2 matrices to the
nash.Game class. Here is the zero sum game matching pennies [https://en.wikipedia.org/wiki/Matching_pennies]:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> matching_pennies
Zero sum game with payoff matrices:

Row player:
[[ 1 -1]
 [-1  1]]

Column player:
[[-1  1]
 [ 1 -1]]





Here is the non zero sum game prisoners
dilemma [https://en.wikipedia.org/wiki/Prisoner%27s_dilemma]:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)
>>> prisoners_dilemma
Bi matrix game with payoff matrices:

Row player:
[[3 0]
 [5 1]]

Column player:
[[3 5]
 [0 1]]









            

          

      

      

    

  

    
      
          
            
  
Calculate utilities

A game can be passed a pair of mixed strategies (distributions over the set of
pure strategies) to return the utilities. Let us create a game to illustrate
this:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)





The utility for both players when they both play their first strategy:

>>> sigma_r = np.array([1, 0])
>>> sigma_c = np.array([1, 0])
>>> prisoners_dilemma[sigma_r, sigma_c]
array([3, 3])





The utility to both players when they play uniformly randomly across both their
strategies:

>>> sigma_r = np.array([1 / 2, 1 / 2])
>>> sigma_c = np.array([1 / 2, 1 / 2])
>>> prisoners_dilemma[sigma_r, sigma_c]
array([2.25, 2.25])









            

          

      

      

    

  

    
      
          
            
  
Solve with support enumeration

One of the algorithms implemented in Nashpy is called
Support enumeration, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)





This support_enumeration method returns a generator of all the
equilibria:

>>> equilibria = matching_pennies.support_enumeration()
>>> for eq in equilibria:
...     print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))









            

          

      

      

    

  

    
      
          
            
  
Solve with vertex enumeration

One of the algorithms implemented in Nashpy is called
Vertex enumeration, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)





This vertex_enumeration method returns a generator of all the
equilibria:

>>> equilibria = matching_pennies.vertex_enumeration()
>>> for eq in equilibria:
...     print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))









            

          

      

      

    

  

    
      
          
            
  
Solve with Lemke Howson

One of the algorithms implemented in Nashpy is The Lemke Howson Algorithm. This
algorithm does not return all equilibria and takes an input argument:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> matching_pennies.lemke_howson(initial_dropped_label=0)
(array([0.5, 0.5]), array([0.5, 0.5]))





The initial_dropped_label is an integer between 0 and
sum(A.shape) - 1. To iterate over all possible labels use the
lemke_howson_enumeration which returns a generator:

>>> equilibria = matching_pennies.lemke_howson_enumeration()
>>> for eq in equilibria:
...     print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))





Note that this algorithm is not guaranteed to find all equilibria but is
an efficient way of finding an equilibrium.





            

          

      

      

    

  

    
      
          
            
  
Use fictitious play

One of the learning algorithms implemented in Nashpy is called
Fictitious play, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [0, 2]])
>>> B = np.array([[2, 0], [1, 3]])
>>> game = nash.Game(A, B)





The fictitious_play method returns a generator of a given collection of
learning steps:

>>> np.random.seed(0)
>>> iterations = 500
>>> play_counts = game.fictitious_play(iterations=iterations)
>>> for row_play_counts, column_play_counts in play_counts:
...     print(row_play_counts, column_play_counts)
[0 0] [0 0]
[1. 0.] [0. 1.]
...
[498.   1.] [497.   2.]
[499.   1.] [498.   2.]





Note that this process is stochastic:

>>> np.random.seed(1)
>>> play_counts = game.fictitious_play(iterations=iterations)
>>> for row_play_counts, column_play_counts in play_counts:
...     print(row_play_counts, column_play_counts)
[0 0] [0 0]
[0. 1.] [0. 1.]
...
[  0. 499.] [  0. 499.]
[  0. 500.] [  0. 500.]





It is also possible to pass a play_counts variable to give a starting
point for the algorithm:

>>> np.random.seed(1)
>>> play_counts = (np.array([0., 500.]), np.array([0., 500.]))
>>> play_counts = game.fictitious_play(iterations=iterations, play_counts=play_counts)
>>> for row_play_counts, column_play_counts in play_counts:
...     print(row_play_counts, column_play_counts)
[  0. 500.] [  0. 500.]
[  0. 501.] [  0. 501.]
...
[  0. 999.] [  0. 999.]
[   0. 1000.] [   0. 1000.]









            

          

      

      

    

  

    
      
          
            
  
Use stochastic fictitious play

One of the learning algorithms implemented in Nashpy is called
Stochastic fictitious play, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [0, 2]])
>>> B = np.array([[2, 0], [1, 3]])
>>> game = nash.Game(A, B)





The stochastic_fictitious_play method returns a generator of a given collection of
learning steps, comprising of the play counts and the mixed strategy of each player:

>>> np.random.seed(0)
>>> iterations = 500
>>> play_counts_and_distributions = game.stochastic_fictitious_play(iterations=iterations)
>>> for play_counts, distributions in play_counts_and_distributions:
...     row_play_counts, column_play_counts = play_counts
...     row_distributions, column_distributions = distributions
...     print(row_play_counts, column_play_counts, row_distributions, column_distributions)
[0 0] [0 0] None None
[1. 0.] [0. 1.] [9.99953841e-01 4.61594628e-05] [0.501447 0.498553]
...
[498.   1.] [497.   2.] [1.00000000e+00 1.07557011e-13] [9.99999998e-01 2.32299935e-09]
[499.   1.] [498.   2.] [1.00000000e+00 1.17304491e-13] [9.99999998e-01 2.18403537e-09]





Note that this process is stochastic:

>>> np.random.seed(1)
>>> play_counts_and_distributions = game.stochastic_fictitious_play(iterations=iterations)
>>> for play_counts, distributions in play_counts_and_distributions:
...     row_play_counts, column_play_counts = play_counts
...     row_distributions, column_distributions = distributions
...     print(row_play_counts, column_play_counts)
[0 0] [0 0]
[1. 0.] [1. 0.]
...
[499.   0.] [499.   0.]
[500.   0.] [500.   0.]





It is also possible to pass a play_counts variable to give a starting
point for the algorithm:

>>> np.random.seed(0)
>>> play_counts = (np.array([0., 500.]), np.array([0., 500.]))
>>> play_counts_and_distributions = game.stochastic_fictitious_play(iterations=iterations, play_counts=play_counts)
>>> for play_counts, distributions in play_counts_and_distributions:
...     row_play_counts, column_play_counts = play_counts
...     row_distributions, column_distributions = distributions
...     print(row_play_counts, column_play_counts)
...
[  0. 500.] [  0. 500.]
[  0. 501.] [  0. 501.]
...
[  0. 999.] [  0. 999.]
[   0. 1000.] [   0. 1000.]





A value of etha and epsilon_bar can be passed.
See the Stochastic fictitious play reference section for more information. The default values for etha and epsilon bar are
\(10^-1\) and \(10^-2\) respectively:

>>> np.random.seed(0)
>>> etha = 10**-2
>>> epsilon_bar = 10**-3
>>> play_counts_and_distributions = game.stochastic_fictitious_play(iterations=iterations, etha=etha, epsilon_bar=epsilon_bar)
>>> for play_counts, distributions in play_counts_and_distributions:
...     row_play_counts, column_play_counts = play_counts
...     row_distributions, column_distributions = distributions
...     print(row_play_counts, column_play_counts)
...
[0 0] [0 0]
[1. 0.] [0. 1.]
...
[498.   1.] [497.   2.]
[499.   1.] [498.   2.]









            

          

      

      

    

  

    
      
          
            
  
Use replicator dynamics

One of the learning algorithms implemented in Nashpy is called
Replicator dynamics, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 2], [4, 2]])
>>> game = nash.Game(A)





The replicator_dynamics method returns the strategies of the row player
over time:

>>> game.replicator_dynamics()
array([[0.5       , 0.5       ],
       [0.49875032, 0.50124968],
       [0.49750377, 0.50249623],
...
       [0.10199196, 0.89800804],
       [0.10189853, 0.89810147],
       [0.10180527, 0.89819473]])





It is also possible to pass a y0 variable in order to assign a starting
strategy. Otherwise the probability is divided equally amongst all possible
actions. Passing a timepoints variable gives the algorithm a sequence of
timepoints over which to calculate the strategies:

>>> y0 = np.array([0.9, 0.1])
>>> timepoints = np.linspace(0, 10, 1000)
>>> game.replicator_dynamics(y0=y0, timepoints=timepoints)
array([[0.9       , 0.1       ],
       [0.89918663, 0.10081337],
       [0.89836814, 0.10163186],
...
       [0.14109126, 0.85890874],
       [0.1409203 , 0.8590797 ],
       [0.14074972, 0.85925028]])
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Support enumeration

The support enumeration algorithm implemented in Nashpy is based on the
one described in [Nisan2007].

The algorithm is as follows:

For a degenerate 2 player game \((A, B)\in{\mathbb{R}^{m\times n}}^2\)
the following algorithm returns all nash equilibria:


	For all \(1\leq k_1\leq m\) and \(1\leq k_2\leq n\);


	For all pairs of support \((I, J)\) with \(|I|=k_1\) and
\(|J|=k_2\).


	Solve the following equations (this ensures we have best responses):


\[ \begin{align}\begin{aligned}    \sum_{i\in I}{\sigma_{r}}_iB_{ij}=v\text{ for all }j\in J\\\sum_{j\in J}A_{ij}{\sigma_{c}}_j=u\text{ for all }i\in I\end{aligned}\end{align} \]



	Solve


	\(\sum_{i=1}^{m}{\sigma_{r}}_i=1\) and \({\sigma_{r}}_i\geq 0\)
for all \(i\)


	\(\sum_{j=1}^{n}{\sigma_{c}}_i=1\) and \({\sigma_{c}}_j\geq 0\)
for all \(j\)






	Check the best response condition.




Repeat steps 3,4 and 5 for all potential support pairs.


Discussion


	Step 1 is a complete enumeration of all possible strategies that the
equilibria could be.


	Step 2 can be modified to only consider degenerate games ensuring that only
supports of equal size are considered \(|I|=|J|\). This is described
further in Degenerate games.


	Step 3 are the linear equations that are to be solved, for a given pair of
supports these ensure that neither player has an incentive to move to another
strategy on that support.


	Step 4 is to ensure we have mixed strategies.


	Step 5 is a final check that there is no better utility outside of the
supports.




In Nashpy this is all implemented algebraically using Numpy to
solve the linear equations.







            

          

      

      

    

  

    
      
          
            
  
Vertex enumeration

The vertex enumeration algorithm implemented in Nashpy is based on the
one described in [Nisan2007].

The algorithm is as follows:

For a nondegenerate 2 player game \((A, B)\in{\mathbb{R}^{m\times n}}^2\)
the following algorithm returns all nash equilibria:


	Obtain the best response Polytopes \(P\) and \(Q\).


	For all pairs of vertices of \(P\) and \(Q\).


	Check if the pair is fully labeled and return the normalised probability
vectors.




Repeat steps 2 and 3 for all pairs of vertices.


Discussion


	Before creating the best response Polytope we need to consider the best
response Polyhedron. For the row player, this corresponds to the set of all
the mixed strategies available to the row player as well as an upper bound on
the utilities to the column player. Analogously for the column player:


\[ \begin{align}\begin{aligned}\bar P = \{(x, v) \in \mathbb{R}^m \times \mathbb{R}\;|\; x\geq 0,
                                                   \mathbb{1}x=1,
                                                   B^Tx\leq\mathbb{1}v\}\\\bar Q = \{(y, u) \in \mathbb{R}^n \times \mathbb{R}\;|\; y\geq 0,
                                                   \mathbb{1}y=1,
                                                   Ay\leq\mathbb{1}u\}\end{aligned}\end{align} \]

Note that in both definitions above we have a total of \(m + n\)
inequalities in the constraints.

For \(P\), the first \(m\) of those
constraints correspond to the elements of \(x\) being greater or equal to
0. For a given \(x\), if \(x_i=0\), we say that \(x\) has label
:math`i`. This corresponds to strategy \(i\) not being in the support of
\(x\).

For the last \(n\) of these inequalities, when they are equalities they
correspond to whether or not strategy \(1\leq j \leq n\) of the other
player is a best response to \(x\). Similarly, if strategy \(j\) is a
best response to \(x\) then we say that \(x\) has label \(m +
j\).

This all holds analogously for the column player. If the labels of a pair of
elements of \(\bar P\) and \(\bar Q\) give the full set of integers
from \(1\) to \(m + n\) then they represent strategies that are best
responses to each other. Since, this would imply that either a pure stragey
is not played or it is a best response to the other players strategy.

The difficulty with using the best response Polyhedron is that the upper
bound on the utilities of both players (\(u, v\)) is not known.
Importantly, we do not need to know it. Thus, we assume that in both cases:
\(u=v=1\) (this simply corresponds to a scaling of our strategy vectors).

This allows us to define the best response Polytopes:


\[ \begin{align}\begin{aligned}P = \{(x, v) \in \mathbb{R}^m \times \mathbb{R}\;|\; x\geq 0,
                                              B^Tx\leq 1\}\\Q = \{(y, u) \in \mathbb{R}^n \times \mathbb{R}\;|\; y\geq 0,
                                                   Ay\leq 1\}\end{aligned}\end{align} \]



	Step 2: The vertices of these polytopes are the points that will have labels
(they are the points that lie at the intersection of the underlying
halfspaces [Ziegler2012]).

To find these vertices, nashpy uses scipy which has a handy
class for creating Polytopes using the inequality definitions and being able
to return the vertices. Here is the wrapper written in nashpy that is
used by the vertex enumeration algorithm to give the vertices and
corresponding labels:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 3]])
>>> halfspaces = nash.polytope.build_halfspaces(A)
>>> vertices = nash.polytope.non_trivial_vertices(halfspaces)
>>> for vertex in vertices:  
...     print(vertex)
(array([0.333..., 0...]), {0, 3})
(array([0..., 0.333...]), {1, 2})
(array([0.25, 0.25]), {0, 1})







	Step 3, we iterate over all pairs of the vertices of both polytopes and pick
out the ones that are fully labeled. Because of the scaling that took place
to create the Polytope from the Polyhedron, we will need to return a
normalisation of both vertices.










            

          

      

      

    

  

    
      
          
            
  
The Lemke Howson Algorithm

The Lemke Howson algorithm implemented in Nashpy is based on the
one described in [Nisan2007] originally introduced in [Lemke1964].

The algorithm is as follows:

For a nondegenerate 2 player game \((A, B)\in{\mathbb{R}^{m\times n}}^2\)
the following algorithm returns a single Nash equilibria:


	Obtain the best response Polytopes \(P\) and \(Q\).


	Choose a starting label to drop, this will correspond to a vertex of
\(P\) or \(Q\).


	In that polytope, remove the label from the corresponding vertex and move to
the vertex that shared that label. A new label will be picked up and
duplicated in the other polytope.


	In the other polytope drop the duplicate label and move to the vertex that
shared that label.




Repeat steps 3 and 4 until there are no duplicate labels.


Discussion

This algorithm is implemented using integer pivoting.


	Step 1, the best response polytopes \(P\) and \(Q\) are represented
by a tableau. For example for:


\[\begin{split}A =
\begin{pmatrix}
    3 & 1\\
    1 & 3
\end{pmatrix}\end{split}\]


\[\begin{split}B =
\begin{pmatrix}
    1 & 3\\
    2 & 1
\end{pmatrix}\end{split}\]

This is represented as a pair of tableau:


\[\begin{split}T_c =
\begin{pmatrix}
    3 & 1 & 1 & 0 & 1\\
    1 & 3 & 0 & 1 & 1
\end{pmatrix}\end{split}\]

For reasons that will become clear, we infact shift this tableau so
that the labelling is coherent across both polytopes:


\[\begin{split}T_c =
\begin{pmatrix}
    1 & 0 & 3 & 1 & 1\\
    0 & 1 & 1 & 3 & 1
\end{pmatrix}\end{split}\]

Here it is as a numpy array:

>>> import numpy as np
>>> col_tableau = np.array([[1, 0, 3, 1, 1],
...                         [0, 1, 1, 3, 1]])





Here is the tableau that corresponds to \(B\):


\[\begin{split}T_r =
\begin{pmatrix}
    1 & 2 & 1 & 0 & 1\\
    3 & 1 & 0 & 1 & 1
\end{pmatrix}\end{split}\]

Here it is as a numpy array:

>>> row_tableau = np.array([[1, 2, 1, 0, 1],
...                         [3, 1, 0, 1, 1]])







	Step 2, choosing a starting label is choosing an integer from \(0 \leq k
< m + n\) (we start our indices at 0). As an example, let us choose the label
\(1\).

First we need to identify which vertex has that label. The labels of a
tableau correspond to the non basic variables: these are the columns with
more than just a single non zero variable:


	The labels of \(T_c\) are thus \(\{2, 3\}\):

>>> import nashpy as nash
>>> nash.integer_pivoting.non_basic_variables(col_tableau)
{2, 3}







	The labels of \(T_r\) are thus \(\{0, 1\}\):

>>> nash.integer_pivoting.non_basic_variables(row_tableau)
{0, 1}









So we are going to drop label \(1\) from \(T_r\).



	Step 3, removing a label and moving from one vertex to another corresponds
to integer pivoting [Dantzig2016]. This is a manipulation of \(T\),
dropping label \(1\) corresponds to pivoting the second column.

To do this we need to identify which row will not change (the “pivot row”),
this is done by finding the smallest ratio of value in that column over the
value in the last column: \((T_{r})_{i4}/(T_{r})_{ik}\).

In our case the first row has corresponding ratio: \(1/2\) and the second
ratio \(1/1\). So our pivot row is the first row:

>>> nash.integer_pivoting.find_pivot_row(row_tableau, column_index=1)
0





What we now do is row operations so as to make the second column correspond
to a basic variable. We will do this by multiplying the second row by 2 and
then subtracting the first row by it:


\[\begin{split}T_r =
\begin{pmatrix}
    1  & 2 & 1 & 0 & 1\\
    5 & 0 & -1 & 2 & 1
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 2\}\) so it has “picked up”
label \(2\):

>>> nash.integer_pivoting.pivot_tableau(row_tableau, column_index=1)
{2}
>>> row_tableau
array([[ 1,  2,  1,  0,  1],
       [ 5,  0, -1,  2,  1]])







	Step 4, we will now repeat the previous manipulation on \(T_c\) where we
now need to drop the duplicate label \(2\). We do this by pivoting the
third column.

The ratios are: \(1/3\) for the first row and \(1/1\) for the
second, thus the pivot row is the first row:

>>> nash.integer_pivoting.find_pivot_row(col_tableau, column_index=2)
0





Using similar row operations we obtain:


\[\begin{split}T_c =
\begin{pmatrix}
     1 & 0 & 3 & 1 & 1\\
    -1 & 3 & 0 & 8 & 2
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 3\}\), so it has picked up
label \(0\):

>>> nash.integer_pivoting.pivot_tableau(col_tableau, column_index=2)
{0}
>>> col_tableau
array([[ 1,  0,  3,  1,  1],
       [-1,  3,  0,  8,  2]])





We now need to drop \(0\) from \(T_r\), we do this by pivoting the
first column. The ratio test: \(1/1 > 1/5\) implies that the second row
is the pivot row. Using similar algebraic manipulations we obtain:


\[\begin{split}T_r =
\begin{pmatrix}
    0 & 10 & 6 & -2 & 4\\
    5 & 0 & -1 & 2 & 1
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{2, 3\}\), so it has picked up
label \(3\):

>>> nash.integer_pivoting.pivot_tableau(row_tableau, column_index=0)
{3}
>>> row_tableau
array([[ 0, 10,  6, -2,  4],
       [ 5,  0, -1,  2,  1]])





We now need to drop \(3\) from \(T_c\), we do this by pivoting the
fourth column. The ratio test: \(1/1>2/8\) indicates that we pivot on the
second row which gives:


\[\begin{split}T_c =
\begin{pmatrix}
     9 & -1& 24 & 0 & 6\\
    -1 &  3& 0  & 8 & 2
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 1\}\):

>>> nash.integer_pivoting.pivot_tableau(col_tableau, column_index=3)
{1}
>>> col_tableau
array([[ 9, -3, 24,  0,  6],
       [-1,  3,  0,  8,  2]])





The union of the labels of \(T_r\) and \(T_c\) is: \(\{0, 1, 2,
3\}\) which implies that we have a fully labeled vertx pair.

The vertex corresponding to \(T_r\) are obtained by setting the non basic
variables to 0 and looking at the corresponding values of the first two
columns:


\[v_r = (1/5, 4/10) = (1/5, 2/5)\]

The vertex corresponding to \(T_c\) are obtained from the last 2 columns:


\[v_c = (6/24, 2/8) = (1/4, 1/4)\]





The final step of the algorithm is to return the normalised probabilities that
correspond to these vertices:


\[((1/3, 2/3), (1/2, 1/2))\]







            

          

      

      

    

  

    
      
          
            
  
Degenerate games

A two player game is called nondegenerate if no mixed strategy of support size
\(k\) has more than \(k\) pure best responses.

For example, the zero sum game defined by the following matrix is degenerate:


\[\begin{split}A =
\begin{pmatrix}
     0 & -1 &  1\\
    -1 &  0 &  1\\
    -1 &  1 &  0
\end{pmatrix}\end{split}\]

The third column has two pure best responses.

When dealing with degenerate games unexpected results can occur:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [-1, 0, 1], [-1, 0, 1]])
>>> game = nash.Game(A)





Here is the output when using Support enumeration:

>>> for eq in game.support_enumeration():
...     print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.5 0.5 0. ] [0.5 0.5 0. ]
[0.5 0.  0.5] [0.5 0.5 0. ]





Here is the output when using Vertex enumeration:

>>> for eq in game.vertex_enumeration(): 
...     print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.5 0.  0.5] [ 0.5  0.5 -0. ]
[ 0.5  0.5 -0. ] [ 0.5  0.5 -0. ]





Here is the output when using the The Lemke Howson Algorithm:

>>> for eq in game.lemke_howson_enumeration():  
...     print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.33... 0.33... 0.33...] [nan]





We see that the lemke-howson algorithm fails but also that the
Support enumeration and Vertex enumeration fail to find some
equilibria: there is in fact a range of strategies the row player can play
against [ 0.5 0.5 0] that is still a best response.

The Support enumeration algorithm can be executed with two optional
arguments that allow for control of it’s execution:


	non_degenerate=True (False is the default) will only consider
supports of equal size. If you know your game is non degenerate this will make
support enumeration execute less checks.


	tol=0 (10 ** -16 is the default), when considering the
underlying linear system tol is considered to be a lower bound for
difference between two real numbers. Using tol=0 ensures a very strict
execution of the algorithm.




Here is an example:

>>> A = np.array([[4, 9, 9], [9, 1, 6], [9, 2, 3]])
>>> B = np.array([[2, 2, 5], [7, 4, 4], [1, 6, 4]])
>>> game = nash.Game(A, B)
>>> for eq in game.support_enumeration():
...     print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.5 0.5 0. ] [0.38 0.   0.62]
[0.2 0.5 0.3] [0.57 0.32 0.11]
>>> for eq in game.support_enumeration(non_degenerate=True):
...     print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.2 0.5 0.3] [0.57 0.32 0.11]
>>> for eq in game.support_enumeration(non_degenerate=False, tol=0):
...     print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.2 0.5 0.3] [0.57 0.32 0.11]









            

          

      

      

    

  

    
      
          
            
  
Fictitious play

The fictitious play algorithm implemented in Nashpy is based on the
one described in [Fudenberg1998].

The algorithm is as follows:

For a game \((A, B)\in\mathbb{R}^{m\times n}\) define
\(\kappa_t^{i}:S^{-1}\to\mathbb{N}\) to be a function that in a given time
period \(t\) for a player \(i\) maps a strategy \(s\) from the
opponent’s strategy space \(S^{-1}\) to a number of total times the opponent
has played \(s\).

Thus:


\[\begin{split}\kappa_t^{i}(s^{-i}) = \kappa_{t-1}(s^{-i}) + \begin{cases}
                                     1,& \text{ if }s^{-i}_{t-1}=s^{-i}\\
                                     0,& \text{ otherwise}
                                     \end{cases}\end{split}\]

In practice:


\[\kappa_t^{1} \in \mathbb{Z}^{n}\qquad \kappa_t^{2} \in \mathbb{Z} ^ {m}\]

At stage \(t\), each player assumes their opponent is playing a mixed strategy
based on \(\kappa_{t-1}\):


\[\frac{\kappa_{t-1}}{\sum\kappa_{t-1}}\]

They calculate the expected value of each strategy, which is equivalent to:


\[s_{t}^{1}\in\text{argmax}_{s\in S_1}A\kappa_{t-1}^{2}\qquad s_{t}^{2}\in\text{argmax}_{s\in S_2}B^T\kappa_{t-1}^{1}\]

In the case of multiple best responses, a random choice is made.


Discussion

Note that this algorithm will not always converge and sometimes it depends on
the form of the game.

For example:

>>> import numpy as np
>>> import nashpy as nash
>>> A = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
>>> B = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> np.random.seed(0)
>>> play_counts = tuple(game.fictitious_play(iterations=iterations))
>>> play_counts[-1]
[array([5464., 1436., 3100.]), array([2111., 4550., 3339.])]





We can visualise the lack of convergence:

>>> import matplotlib.pyplot as plt
>>> plt.figure() 
>>> probabilities = [row_play_counts / np.sum(row_play_counts) for row_play_counts, col_play_counts in play_counts]
>>> for strategy in zip(*probabilities):
...     plt.plot(strategy, label=f"$s_{number}$")  
>>> plt.xlabel("Iteration")  
>>> plt.ylabel("Probability")  
>>> plt.title("Actions taken by row player")  
>>> plt.legend()  





[image: ../_images/main.svg]If we modify the game slightly we obtain a different outcome:

>>> A = np.array([[1 / 2, 1, 0], [0, 1 / 2, 1], [1, 0, 1 / 2]])
>>> B = np.array([[1 / 2, 0, 1], [1, 1 / 2, 0], [0, 1, 1 / 2]])
>>> game = nash.Game(A, B)
>>> np.random.seed(0)
>>> play_counts = tuple(game.fictitious_play(iterations=iterations))
>>> play_counts[-1]
[array([3290., 3320., 3390.]), array([3356., 3361., 3283.])]





With a clear convergence now visible:

>>> import matplotlib.pyplot as plt
>>> plt.figure() 
>>> probabilities = [row_play_counts / np.sum(row_play_counts) for row_play_counts, col_play_counts in play_counts]
>>> for strategy in zip(*probabilities):
...     plt.plot(strategy, label=f"$s_{number}$")  
>>> plt.xlabel("Iteration")  
>>> plt.ylabel("Probability")  
>>> plt.title("Actions taken by row player")  
>>> plt.legend()  





[image: ../_images/main1.svg]





            

          

      

      

    

  

    
      
          
            
  
Stochastic fictitious play

The stochastic fictitious play algorithm implemented in Nashpy is based on the
one given in [Hofbauer2002].

As explained in [Fudenberg1998] stochastic fictitious play “avoids the discontinuity inherent
in standard fictitious play, where a small change in the data can lead to an abrupt change in
behaviour.”

The algorithm is designed to converge in cases where fictitious play does not
converge. Note that in some cases this will require a thoughtful choice of the etha
and epsilon_bar parameters.

For a game \((A, B)\in\mathbb{R}^{m\times n}\) define
\(\kappa_t^{i}:S^{-1}\to\mathbb{N}\) to be a function that in a given time
period \(t\) for a player \(i\) maps a strategy \(s\) from the
opponent’s strategy space \(S^{-1}\) to a number of total times the opponent
has played \(s\).

As per standard Fictitious play, each player assumes their opponent is playing a mixed strategy
based on \(\kappa_{t-1}\). If no play has taken place, then the probability of playing each
action is assumed to be equal. The assumed mixed strategies of a player’s opponent are multplied
by the player’s own payoff matrices to calculate the expected payoff of each action.

A stochastic pertubation \(\epsilon_i\) is added to each expected payoff \(\pi_i\) to give a
pertubated payoff.  Each \(\epsilon_i\) is independent of each \(\pi_i\) and is a random number
between 0 and epsilon_bar.

A logit choice function is used to map the pertubated payoff to a non-negative probability distribution,
corresponding to the probability with which each strategy is chosen by the player. The logit choice function
can be seen below:


\[L_i( \pi ) = \frac{\exp (\eta ^{-1} \pi_i )}{\sum_{j}\exp (\eta ^{-1} \pi_j)}\]


Discussion

Using the same game from the fictitious play discussion section, we can visualise a lack of convergence when
using the default value of epsilon_bar:

>>> import numpy as np
>>> import nashpy as nash
>>> A = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
>>> B = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> np.random.seed(0)
>>> play_counts_and_distribuions = tuple(game.stochastic_fictitious_play(iterations=iterations))
>>> play_counts, distributions = play_counts_and_distribuions[-1]
>>> print(play_counts)
[array([3937., 1907., 4156.]), array([2823., 5458., 1719.])]

>>> import matplotlib.pyplot as plt
>>> plt.figure() 
>>> probabilities = [
...     row_play_counts / np.sum(row_play_counts)
...     if np.sum(row_play_counts) != 0
...     else row_play_counts + 1 / len(row_play_counts)
...     for (row_play_counts, col_play_counts), _ in play_counts_and_distribuions]
>>> for number, strategy in enumerate(zip(*probabilities)):
...     plt.plot(strategy, label=f"$s_{number}$") 
>>> plt.xlabel("Iteration") 
>>> plt.ylabel("Probability") 
>>> plt.title("Actions taken by row player") 
>>> plt.legend() 





[image: ../_images/main5.svg]Observe below that the game converges when passing values for etha and epsilon_bar:

>>> A = np.array([[1 / 2, 1, 0], [0, 1 / 2, 1], [1, 0, 1 / 2]])
>>> B = np.array([[1 / 2, 0, 1], [1, 1 / 2, 0], [0, 1, 1 / 2]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> etha = 0.1
>>> epsilon_bar = 10**-1
>>> np.random.seed(0)
>>> play_counts_and_distribuions = tuple(game.stochastic_fictitious_play(iterations=iterations, etha=etha, epsilon_bar=epsilon_bar))
>>> play_counts_and_distribuions[-1]
([array([3300., 3293., 3407.]), array([3320., 3372., 3308.])], [array([0.33502382, 0.41533594, 0.24964024]), array([0.18890743, 0.42793694, 0.38315563])])
>>> import matplotlib.pyplot as plt
>>> plt.figure() 
>>> probabilities = [
...     row_play_counts / np.sum(row_play_counts)
...     if np.sum(row_play_counts) != 0
...     else row_play_counts + 1 / len(row_play_counts)
...     for (row_play_counts, col_play_counts), _ in play_counts_and_distribuions]
>>> for number, strategy in enumerate(zip(*probabilities)):
...     plt.plot(strategy, label=f"$s_{number}$") 
>>> plt.xlabel("Iteration") 
>>> plt.ylabel("Probability") 
>>> plt.title("Actions taken by row player") 
>>> plt.legend() 





[image: ../_images/main6.svg]





            

          

      

      

    

  

    
      
          
            
  
Replicator dynamics

The replicator dynamic algorithm implemented in Nashpy is based on the
one described in [Fudenberg1998].

Strategies are assigned amongst the popoulation. Individuals randomly
encounter other individuals and play their assigned strategy.

As the game continues, the proportion of the population playing each strategy
increases or decreases depending on whether the payoff of the strategy is higher
or lower respectively than the mean payoff of the population.

The row player represents a given individual and the column player is the population.

Given a matrix \(A\in\mathbb{R}^{m\times n}\) that corresponds to the utilities
of the row player, we have:


\[f = Ax\]

Where \(f\in\mathbb{R}^{m\times 1}\) corresponds to the fitness of each strategy
and \(x\in\mathbb{R}^{m\times 1}\) corresponds to the population size of each strategy

Equivalently, where \(\phi\) equals the average fitness of the population, we have:


\[\phi = fx\]

In matrix formation we can calculate the rate of change of the strategies:


\[\frac{dx}{dt}_i = x_i(f_i - \phi)\text{ for all }i\]


Discussion

Stability is acheived in replicator dynamics when \(\frac{dx}{dt} = 0\).
Every stable steady state is a Nash equilibria, and every Nash equilibria is a steady
state in replicator dynamics.

Stability is obtained when either:


	An entire population plays the same strategy


	A population plays a mixture of the strategies (such that there is indifference between the fitness)




It is possible that the game does not converge to a steady state. See below an example of a game of Rock,
Paper, Scissors that does not converge:

>>> import numpy as np
>>> import nashpy as nash
>>> import matplotlib.pyplot as plt
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> game = nash.Game(A)
>>> y0 = np.array([0.3, 0.35, 0.35])





>>> plt.plot(game.replicator_dynamics(y0=y0)) 
>>> plt.xlabel("Timepoints") 
>>> plt.ylabel("Probability") 
>>> plt.title("Probability distribution of strategies over time") 
>>> plt.legend([f"$s_{0}$", f"$s_{1}$", f"$s_{2}$"], loc='upper left') 





[image: ../_images/main2.svg]Below shows an example of a stable steady state:

>>> import numpy as np
>>> import nashpy as nash
>>> import matplotlib.pyplot as plt
>>> A = np.array([[4, 3], [2, 3]])
>>> game = nash.Game(A)
>>> y0 = np.array([1 / 2, 1 / 2])
>>> timepoints = np.linspace(0, 10, 1000)





>>> plt.plot(game.replicator_dynamics(y0=y0, timepoints=timepoints)) 
>>> plt.xlabel("Timepoints") 
>>> plt.ylabel("Probability") 
>>> plt.title("Probability distribution of strategies over time") 
>>> plt.legend([f"$s_{0}$", f"$s_{1}$"]) 





[image: ../_images/main3.svg]Evolutionary stable strategies (ESS) remain stable subject to small evolutionary change. This means that
the strategy cannot be invaded by any of the other strategies in the population.
Every ESS is an asymptotically stable steady state of the replicator dynamic, but the converse does not
necessarily hold.

To visualise an example of ESS consider the matrix \(A = \begin{pmatrix} 4 & 3 \\ 2 & 3\end{pmatrix}\).
It can be shown that \((1, 0)\) is an ESS for this game. Below we take a small change from this strategy
and note that the replicator dynamics guide us back to it.

>>> import numpy as np
>>> import nashpy as nash
>>> import matplotlib.pyplot as plt
>>> A = np.array([[4, 3], [2, 3]])
>>> game=nash.Game(A)
>>> epsilon = 1 / 10
>>> y0 = np.array([1 - epsilon, 0 + epsilon])
>>> timepoints = np.linspace(0, 10, 1000)
>>> timepoints[-1]
10.0





>>> plt.plot(game.replicator_dynamics(y0=y0, timepoints=timepoints)) 
>>> plt.xlabel("Timepoints") 
>>> plt.ylabel("Probability") 
>>> plt.title("Probability distribution of strategies over time") 
>>> plt.legend([f"$s_{0}$", f"$s_{1}$"]) 





[image: ../_images/main4.svg]
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Source files


Subpackages



	nash.algorithms package
	Submodules

	nashpy.algorithms.support_enumeration module

	nashpy.algorithms.vertex_enumeration module

	nashpy.algorithms.lemke_howson module





	nash.learning package
	Submodules

	nashpy.learning.fictitious_play module












Submodules




nashpy.game module

A class for a normal form game


	
class nashpy.game.Game(*args)

	Bases: object

A class for a normal form game.


	Parameters

	
	A (-) – non zero sum games.


	B (2 dimensional list/arrays representing the payoff matrices for) – non zero sum games.


	A – zero sum game.









	
fictitious_play(iterations, play_counts=None)

	Return a given sequence of actions through fictitious play. The
implementation corresponds to the description of chapter 2 of
[Fudenberg1998].

1. Players have a belief of the strategy of the other player: a vector
representing the number of times the player has chosen a given strategy.
2. Players choose a best response to the belief.
3. Players update their belief based on the latest choice of the
opponent.


	Parameters

	
	iterations (int) – 


	play_counts (iterator) – 






	Returns

	plays



	Return type

	A generator










	
lemke_howson(initial_dropped_label)

	Obtain the Nash equilibria using the Lemke Howson algorithm implemented
using integer pivoting.

Algorithm implemented here is Algorithm 3.6 of [Nisan2007].


	Start at the artificial equilibrium (which is fully labeled)


	Choose an initial label to drop and move in the polytope for which
the vertex has that label to the edge
that does not share that label. (This is implemented using integer
pivoting)


	A label will now be duplicated in the other polytope, drop it in a
similar way.


	Repeat steps 2 and 3 until have Nash Equilibrium.





	Parameters

	initial_dropped_label (int) – 



	Returns

	equilibria



	Return type

	A tuple.










	
lemke_howson_enumeration()

	Obtain Nash equilibria for all possible starting dropped labels
using the lemke howson algorithm. See Game.lemke_howson for more
information.

Note: this is not guaranteed to find all equilibria.


	Returns

	equilibria



	Return type

	A generator










	
replicator_dynamics(y0=None, timepoints=None)

	Implement replicator dynamics
Return an array showing probability of each strategy being played over
time.
The total population is constant. Strategies can either stay constant
if equilibria is achieved, replicate or die.


	Parameters

	
	A (nxm array, where n=m) – 


	y0 (array) – 


	timepoints (array) – 






	Returns

	xs



	Return type

	array










	
stochastic_fictitious_play(iterations, play_counts=None, etha=0.1, epsilon_bar=0.01)

	Return a given sequence of actions and mixed strategies through stochastic fictitious play. The
implementation corresponds to the description given in [Hofbauer2002].


	Parameters

	
	iterations (int) – 


	play_counts (iterator) – 


	etha (float) – 


	epsilon_bar (float) – 






	Returns

	plays



	Return type

	A generator










	
support_enumeration(non_degenerate=False, tol=1e-16)

	Obtain the Nash equilibria using support enumeration.

Algorithm implemented here is Algorithm 3.4 of [Nisan2007].


	For each k in 1…min(size of strategy sets)


	For each I,J supports of size k


	Solve indifference conditions


	Check that have Nash Equilibrium.





	Returns

	equilibria



	Return type

	A generator.










	
vertex_enumeration()

	Obtain the Nash equilibria using enumeration of the vertices of the best
response polytopes.

Algorithm implemented here is Algorithm 3.5 of [Nisan2007].


	Build best responses polytopes of both players


	For each vertex pair of both polytopes


	Check if pair is fully labelled


	Return the normalised pair





	Returns

	equilibria



	Return type

	A generator.
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nash.algorithms package


Submodules




nashpy.algorithms.support_enumeration module

A class for a normal form game


	
nashpy.algorithms.support_enumeration.indifference_strategies(A, B, non_degenerate=False, tol=1e-16)

	A generator for the strategies corresponding to the potential supports


	Returns

	
	A generator of all potential strategies that are indifferent on each


	potential support. Return False if they are not valid (not a


	probability vector OR not fully on the given support).















	
nashpy.algorithms.support_enumeration.is_ne(strategy_pair, support_pair, payoff_matrices)

	Test if a given strategy pair is a pair of best responses


	Parameters

	
	strategy_pair (a 2-tuple of numpy arrays) – 


	support_pair (a 2-tuple of numpy arrays) – 













	
nashpy.algorithms.support_enumeration.obey_support(strategy, support, tol=1e-16)

	Test if a strategy obeys its support


	Parameters

	
	strategy (a numpy array) – A given strategy vector


	support (a numpy array) – A strategy support






	Returns

	
	A boolean (whether or not that strategy does indeed have the given)


	support















	
nashpy.algorithms.support_enumeration.potential_support_pairs(A, B, non_degenerate=False)

	A generator for the potential support pairs


	Returns

	



	Return type

	A generator of all potential support pairs










	
nashpy.algorithms.support_enumeration.powerset(n)

	A power set of range(n)

Based on recipe from python itertools documentation:

https://docs.python.org/2/library/itertools.html#recipes






	
nashpy.algorithms.support_enumeration.solve_indifference(A, rows=None, columns=None)

	Solve the indifference for a payoff matrix assuming support for the
strategies given by columns

Finds vector of probabilities that makes player indifferent between
rows.  (So finds probability vector for corresponding column player)


	Parameters

	
	A (a 2 dimensional numpy array (A payoff matrix for the row player)) – 


	rows (the support played by the row player) – 


	columns (the support player by the column player) – 






	Returns

	
	A numpy array


	A probability vector for the column player that makes the row


	player indifferent. Will return False if all entries are not >= 0.















	
nashpy.algorithms.support_enumeration.support_enumeration(A, B, non_degenerate=False, tol=1e-16)

	Obtain the Nash equilibria using support enumeration.

Algorithm implemented here is Algorithm 3.4 of [Nisan2007]


	For each k in 1…min(size of strategy sets)


	For each I,J supports of size k


	Solve indifference conditions


	Check that have Nash Equilibrium.





	Returns

	equilibria



	Return type

	A generator.












nashpy.algorithms.vertex_enumeration module

A class for the vertex enumeration algorithm


	
nashpy.algorithms.vertex_enumeration.vertex_enumeration(A, B)

	Obtain the Nash equilibria using enumeration of the vertices of the best
response polytopes.

Algorithm implemented here is Algorithm 3.5 of [Nisan2007]


	Build best responses polytopes of both players


	For each vertex pair of both polytopes


	Check if pair is fully labelled


	Return the normalised pair





	Returns

	equilibria



	Return type

	A generator.












nashpy.algorithms.lemke_howson module

A class for the Lemke Howson algorithm


	
nashpy.algorithms.lemke_howson.lemke_howson(A, B, initial_dropped_label=0)

	Obtain the Nash equilibria using the Lemke Howson algorithm implemented
using integer pivoting.

Algorithm implemented here is Algorithm 3.6 of [Nisan2007].


	Start at the artificial equilibrium (which is fully labeled)


	Choose an initial label to drop and move in the polytope for which
the vertex has that label to the edge
that does not share that label. (This is implemented using integer
pivoting)


	A label will now be duplicated in the other polytope, drop it in a
similar way.


	Repeat steps 2 and 3 until have Nash Equilibrium.





	Parameters

	initial_dropped_label (int) – 



	Returns

	equilibria



	Return type

	A tuple.










	
nashpy.algorithms.lemke_howson.shift_tableau(tableau, shape)

	Shift a tableau to ensure labels of pairs of tableaux coincide


	Parameters

	
	tableau (a numpy array) – 


	shape (a tuple) – 






	Returns

	tableau



	Return type

	a numpy array










	
nashpy.algorithms.lemke_howson.tableau_to_strategy(tableau, basic_labels, strategy_labels)

	Return a strategy vector from a tableau


	Parameters

	
	tableau (a numpy array) – 


	basic_labels (a set) – 


	strategy_labels (a set) – 






	Returns

	strategy



	Return type

	a numpy array















            

          

      

      

    

  

    
      
          
            
  
nash.learning package


Submodules




nashpy.learning.fictitious_play module

Code to carry out fictitious learning


	
nashpy.learning.fictitious_play.fictitious_play(A, B, iterations, play_counts=None)

	Implement fictitious play






	
nashpy.learning.fictitious_play.get_best_response_to_play_count(A, play_count)

	Returns the best response to a belief based on the playing distribution of the opponent






	
nashpy.learning.fictitious_play.update_play_count(play_count, play)

	Update a belief vector with a given play
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John Nash

This library is named after the mathematician John Nash. He is most famous for
his work in Game Theory that culminated in him winning a Noble prize in
Economics. The book [Nasar2011] (popularized in a 2001 movie) gives a good
overview of his life.

The work he received a Noble prize for was a proof that a game always has
an equilibrium [Nash1950]. His proof is an exceptional piece of mathematics
where he uses a fixed point theorem by showing that an equilibrium is equivalent
to a fixed point of a function.

Subsequently, these equilibria have been referred to as Nash equilibria.





            

          

      

      

    

  

    
      
          
            
  
How does Nashpy relate to Gambit

Gambit [http://www.gambit-project.org/] is the state of the art software
library for Game Theory [McKelvey2016]. It also has a Python interface. It
handles \(N\geq2\) player games and is computationally efficient. It is a
much more mature piece of software than Nashpy.

It does however sometimes prove difficult to install (because of the
required C libraries), in particular installation is not supported on Windows.
In those instances you can use Game Theory Explorer [http://gte.csc.liv.ac.uk/index/] which is a great web point and click
Graphical User Interface (GUI) to Gambit.

The main mission statement of Nashpy is to provide a simple to install
Python library that implements algorithms that are simple to implement using the
scientific Python stack (numpy and scipy).

This is motivated by the fact that I [http://vknight.org/] wanted a Python
library (not a GUI as I am keen to teach reproducibly research methodologies)
for teaching my Mathematics students. Using the Gambit Python interface is not
sufficient for this as students need to be able to install it on their own
machines (without difficulty).

All the algorithms in Nashpy are implemented with readability as the
main motivation. This at times comes at an efficiency cost. For example,
Support enumeration builds the entire Polytope representation (using
functionality of scipy) which is not efficient.

To summarise:


	If you want to do sophisticated efficient game theoretic computations, use
Gambit [http://www.gambit-project.org/].


	If you are happy to use a GUI use Game Theory Explorer [http://gte.csc.liv.ac.uk/index/].


	If you would like an easy to install Python library for two player games you
can use Nashpy.








            

          

      

      

    

  

    
      
          
            
  
Other Python Game theory libraries


	Axelrod [http://axelrod.readthedocs.io/en/stable/]: a research library
aimed at the study of the Iterated Prisoners dilemma [Knight2016].


	Gambit [http://www.gambit-project.org/]: a C library with a Python
interface for the computation of equilibria [McKelvey2016].
How does Nashpy relate to Gambit.


	Game theory explorer [http://gte.csc.liv.ac.uk/ndex/] a web interface to
gambit useful for teaching. [Savani2015]


	PyNFG [https://pypi.python.org/pypi/PyNFG/0.1.2/]: PyNFG is a Python
package for modeling and solving Network Form Games.


	lrslib [http://cgm.cs.mcgill.ca/~avis/C/lrs.html]: A C implementation of a
reverse search algorithm with modules for Nash equilibria computation.


	sagemath [http://doc.sagemath.org/html/en/reference/game_theory/index.html]: The
mathematical software package Sage has various algorithms for the computation
of Nash equilibria.
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