
Nashpy Documentation
Release 0.0.40

Vincent Knight

Aug 04, 2023

CONTENTS

1 Tutorial: building and finding the equilibrium for a game 3
1.1 Introduction to game theory . 3
1.2 Installing Nashpy . 3
1.3 Creating a game . 4
1.4 Calculating the utility of a pair of strategies . 5
1.5 Computing Nash equilibria . 5
1.6 Learning in games . 6

2 How to 7
2.1 Install Nashpy . 7
2.2 Create a Normal Form Game . 7
2.3 Calculate utilities . 8
2.4 Check if a strategy is a best response . 8
2.5 Use the minimax theorem . 9
2.6 Solve with support enumeration . 9
2.7 Solve with vertex enumeration . 10
2.8 Solve with Lemke Howson . 10
2.9 Use fictitious play . 11
2.10 Use stochastic fictitious play . 12
2.11 Use replicator dynamics . 14
2.12 Use replicator dynamics with mutation . 14
2.13 Use asymmetric replicator dynamics . 15
2.14 Use Moran processes . 16
2.15 Obtain fixation probabilities . 17
2.16 Obtain a repeated game . 17
2.17 Use Moran processes on replacement graph . 18
2.18 Use Moran processes on interaction graph . 19

3 Nashpy Game Theory Text book 21
3.1 Normal Form Games . 21
3.2 Strategies . 26
3.3 Best responses . 29
3.4 Zero Sum Games . 34
3.5 Support enumeration . 38
3.6 Vertex enumeration . 42
3.7 Extensive Form Games . 43
3.8 Repeated Games . 52
3.9 The Emergence of Cooperation . 56
3.10 The Lemke Howson Algorithm . 60
3.11 Degenerate games . 63

i

3.12 Fictitious play . 64
3.13 Stochastic fictitious play . 66
3.14 Replicator dynamics . 67
3.15 Asymmetric replicator dynamics . 79
3.16 Moran Processes . 80

4 Discussion and code reference 89
4.1 John Nash . 89
4.2 How does Nashpy relate to Gambit . 89
4.3 Linear Programming Duality . 90
4.4 Other Python Game theory libraries . 90
4.5 Bibliography . 91
4.6 Source files . 91

5 Contributor documentation 101
5.1 Tutorial: make a contribution to the documentation . 101
5.2 How to . 108
5.3 Discussion . 116
5.4 Reference . 133

6 Indices and tables 135

7 Indices and tables 137

Bibliography 139

Python Module Index 141

Index 143

ii

Nashpy Documentation, Release 0.0.40

A python library for 2 player games.

CONTENTS 1

Nashpy Documentation, Release 0.0.40

2 CONTENTS

CHAPTER

ONE

TUTORIAL: BUILDING AND FINDING THE EQUILIBRIUM FOR A
GAME

1.1 Introduction to game theory

Game theory is the study of strategic interactions between rational agents. This means that it is the study of interactions
when the involved parties try and do what is best from their point of view.

As an example let us consider Rock Paper Scissors. This is a common game where two players choose one of 3 options
(in game theory we call these strategies):

• Rock

• Paper

• Scissors

The winner is decided according to the following:

• Rock crushes scissors

• Paper covers Rock

• Scissors cuts paper

We can represent this mathematically using a 3 by 3 matrix:

𝐴 =

⎛⎝ 0 −1 1
1 0 −1
−1 1 0

⎞⎠
The matrix 𝐴𝑖𝑗 shows the utility to the player controlling the rows when they play the 𝑖 th row and their opponent (the
column player) plays the 𝑗 th column. For example, if the row player played Scissors (the 3rd strategy) and the column
player played Paper (the 2nd strategy) then the row player gets: 𝐴32 = 1 because Scissors cuts Paper.

A recommend text book on Game Theory is [Maschler2013].

1.2 Installing Nashpy

We are going to study this game using Nashpy, first though we need to install it. Nasphy requires the following things
to be on your computer:

• Python 3.5 or greater;

• Scipy 0.19.0 or greater;

• Numpy 1.12.1 or greater.

3

https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors

Nashpy Documentation, Release 0.0.40

Assuming you have those installed, to install Nashpy:

• On Mac OSX or linux open a terminal;

• On Windows open the Command prompt or similar

and type:

$ python -m pip install nashpy

If this does not work, you might not have Python or one of the other dependencies. You might also have problems
due to pip not being recognised. To overcome these, using the Anaconda distribution of Python is recommended as it
installs straightforwardly on all operating systems and also includes the libraries needed to run Nashpy.

1.3 Creating a game

We can create this game using Nashpy:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> rps = nash.Game(A)
>>> rps
Zero sum game with payoff matrices:

Row player:
[[0 -1 1]
[1 0 -1]
[-1 1 0]]

Column player:
[[0 1 -1]
[-1 0 1]
[1 -1 0]]

The string representation of the game also contains some information. For example, it is also showing the matrix that
corresponds to the utility of the column player. In this case that is −𝐴 but that does not always have to be the case.

We can in fact pass a pair of matrices to the game class to create the same game:

>>> B = - A
>>> rps = nash.Game(A, B)
>>> rps
Zero sum game with payoff matrices:

Row player:
[[0 -1 1]
[1 0 -1]
[-1 1 0]]

Column player:
[[0 1 -1]
[-1 0 1]
[1 -1 0]]

4 Chapter 1. Tutorial: building and finding the equilibrium for a game

https://www.continuum.io/downloads

Nashpy Documentation, Release 0.0.40

We get the exact same game, if passed a single game, Nashpy will assume that the game is a zero sum game: in other
words the utilities of both players are opposite.

1.4 Calculating the utility of a pair of strategies

If the row player played Scissors (the 3rd strategy) and the column player played Paper (the 2nd strategy) then the row
player gets: 𝐴32 = 1 because Scissors cuts Paper.

A mathematical approach to representing a strategy is to consider a vector of the size: the number of strategies. For
example 𝜎𝑟 = (0, 0, 1) is the row strategy where the row player always plays their third strategy. Similarly 𝜎𝑐 = (0, 1, 0)
is the strategy for the column player where they always play their second strategy.

When we represent strategies like this we can get the utility to the row player using the following linear algebraic
expression:

𝜎𝑟𝐴𝜎𝑇
𝑐

Similarly, if 𝐵 is the utility to the column player their utility is given by:

𝜎𝑟𝐵𝜎𝑇
𝑐

We can use Nashpy to find these utilities:

>>> sigma_r = [0, 0, 1]
>>> sigma_c = [0, 1, 0]
>>> rps[sigma_r, sigma_c]
array([1, -1])

Players can choose to play randomly, in which case the utility corresponds to the long term average. This is where our
representation of strategies and utility calculations becomes particularly useful. For example, let us assume the column
player decides to play Rock and Paper “randomly”. This corresponds to 𝜎𝑐 = (1/2, 1/2, 0):

>>> sigma_c = [1 / 2, 1 / 2, 0]
>>> rps[sigma_r, sigma_c]
array([0., 0.])

The row player might then decide to change their strategy and “randomly” play Paper and Scissors:

>>> sigma_r = [0, 1 / 2, 1 / 2]
>>> rps[sigma_r, sigma_c]
array([0.25, -0.25])

The column player would then probably deviate once more. Whether or not their is a pair of strategies for both players
at which they both no longer have a reason to move is going to be answered in the next section.

1.5 Computing Nash equilibria

Nash equilibria is (in two player games) a pair of strategies at which both players do not have an incentive to deviate.
We can find these using Nashpy:

>>> eqs = rps.support_enumeration()
>>> list(eqs)
[(array([0.333..., 0.333..., 0.333...]), array([0.333..., 0.333..., 0.333...]))]

1.4. Calculating the utility of a pair of strategies 5

Nashpy Documentation, Release 0.0.40

Nash equilibria is an important concept as it allows to gain an initial understanding of emergent behaviour in complex
systems.

1.6 Learning in games

Nash equilibria are not always observed during non cooperative play: they correspond to strategies at which no play
has an incentive to move but that does not necessarily imply that players can arrive at that equilibria naturally.

We can illustrate this using Nashpy:

>>> import numpy as np
>>> iterations = 100
>>> np.random.seed(0)
>>> play_counts = rps.fictitious_play(iterations=iterations)
>>> for row_play_count, column_play_count in play_counts:
... print(row_play_count, column_play_count)
[0 0 0] [0 0 0]
[1. 0. 0.] [0. 1. 0.]
...
[28. 39. 32.] [37. 26. 36.]
[29. 39. 32.] [37. 26. 37.]

Over time we can see the behaviour emerge, as the play counts can be normalised to give strategy vectors. Note that
these will not always converge.

6 Chapter 1. Tutorial: building and finding the equilibrium for a game

CHAPTER

TWO

HOW TO

How to:

2.1 Install Nashpy

Nashpy currently requires Python 3.5 or above. To install from the Python Package index (PyPi) run the following
command:

$ python -m pip install nashpy

To install a development version from source:

$ git clone https://github.com/drvinceknight/Nashpy.git
$ cd nashpy
$ python -m pip install flit
$ python -m flit install --symlink

2.2 Create a Normal Form Game

A game in Nashpy is created by passing 1 or 2 matrices to the nash.Game class. Here is the zero sum game Matching
Pennies:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> matching_pennies
Zero sum game with payoff matrices:

Row player:
[[1 -1]
[-1 1]]

Column player:
[[-1 1]
[1 -1]]

Here is the non zero sum game Prisoners Dilemma:

7

Nashpy Documentation, Release 0.0.40

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)
>>> prisoners_dilemma
Bi matrix game with payoff matrices:

Row player:
[[3 0]
[5 1]]

Column player:
[[3 5]
[0 1]]

2.3 Calculate utilities

A game can be passed a pair of Strategies to return the utilities. Let us create a game to illustrate this:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)

The utility for both players when they both play their first action:

>>> sigma_r = np.array([1, 0])
>>> sigma_c = np.array([1, 0])
>>> prisoners_dilemma[sigma_r, sigma_c]
array([3, 3])

The utility to both players when they play uniformly randomly across both their actions:

>>> sigma_r = np.array([1 / 2, 1 / 2])
>>> sigma_c = np.array([1 / 2, 1 / 2])
>>> prisoners_dilemma[sigma_r, sigma_c]
array([2.25, 2.25])

2.4 Check if a strategy is a best response

A game can be passed a pair of Strategies to check if they are best responses to each other. Let us create a game to
illustrate this:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)

8 Chapter 2. How to

Nashpy Documentation, Release 0.0.40

The is_best_response method returns a pair of booleans. In this instance, the row player strategy is a best response
to the column player’s but not vice versa:

>>> sigma_r = np.array([0, 1])
>>> sigma_c = np.array([1, 0])
>>> prisoners_dilemma.is_best_response(sigma_r, sigma_c)
(True, False)

2.5 Use the minimax theorem

One of the algorithms implemented in Nashpy is based on the minimax theorem, this is implemented as a method on
the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)

This returns the Nash equilibria by solving the underlying linear program:

>>> matching_pennies.linear_program()
(array([0.5, 0.5]), array([0.5, 0.5]))

Note that this is only defined for Zero sum games:

>>> A = np.array([[1, -1], [-1, 1]])
>>> B = np.array([[2, -2], [-2, 2]])
>>> game = nash.Game(A, B)
>>> game.linear_program()
Traceback (most recent call last):
...
ValueError: The Linear Program corresponding to the minimax theorem is defined only for␣
→˓Zero Sum games.

2.6 Solve with support enumeration

One of the algorithms implemented in Nashpy is called support-enumeration, this is implemented as a method on
the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)

This support_enumeration method returns a generator of all the equilibria:

>>> equilibria = matching_pennies.support_enumeration()
>>> for eq in equilibria:
... print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))

2.5. Use the minimax theorem 9

Nashpy Documentation, Release 0.0.40

2.7 Solve with vertex enumeration

One of the algorithms implemented in Nashpy is called Vertex enumeration, this is implemented as a method on the
Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)

This vertex_enumeration method returns a generator of all the equilibria:

>>> equilibria = matching_pennies.vertex_enumeration()
>>> for eq in equilibria:
... print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))

2.8 Solve with Lemke Howson

One of the algorithms implemented in Nashpy is The Lemke Howson Algorithm. This algorithm does not return all
equilibria and takes an input argument:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> matching_pennies.lemke_howson(initial_dropped_label=0)
(array([0.5, 0.5]), array([0.5, 0.5]))

The initial_dropped_label is an integer between 0 and sum(A.shape) - 1. To iterate over all possible labels
use the lemke_howson_enumeration which returns a generator:

>>> equilibria = matching_pennies.lemke_howson_enumeration()
>>> for eq in equilibria:
... print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))

Note that this algorithm is not guaranteed to find all equilibria but is an efficient way of finding an equilibrium.

10 Chapter 2. How to

Nashpy Documentation, Release 0.0.40

2.9 Use fictitious play

One of the learning algorithms implemented in Nashpy is called Fictitious play, this is implemented as a method on
the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [0, 2]])
>>> B = np.array([[2, 0], [1, 3]])
>>> game = nash.Game(A, B)

The fictitious_play method returns a generator of a given collection of learning steps:

>>> np.random.seed(0)
>>> iterations = 500
>>> play_counts = game.fictitious_play(iterations=iterations)
>>> for row_play_counts, column_play_counts in play_counts:
... print(row_play_counts, column_play_counts)
[0 0] [0 0]
[1. 0.] [0. 1.]
...
[498. 1.] [497. 2.]
[499. 1.] [498. 2.]

Note that this process is stochastic:

>>> np.random.seed(1)
>>> play_counts = game.fictitious_play(iterations=iterations)
>>> for row_play_counts, column_play_counts in play_counts:
... print(row_play_counts, column_play_counts)
[0 0] [0 0]
[0. 1.] [0. 1.]
...
[0. 499.] [0. 499.]
[0. 500.] [0. 500.]

It is also possible to pass a play_counts variable to give a starting point for the algorithm:

>>> np.random.seed(1)
>>> play_counts = (np.array([0., 500.]), np.array([0., 500.]))
>>> play_counts = game.fictitious_play(iterations=iterations, play_counts=play_counts)
>>> for row_play_counts, column_play_counts in play_counts:
... print(row_play_counts, column_play_counts)
[0. 500.] [0. 500.]
[0. 501.] [0. 501.]
...
[0. 999.] [0. 999.]
[0. 1000.] [0. 1000.]

2.9. Use fictitious play 11

Nashpy Documentation, Release 0.0.40

2.10 Use stochastic fictitious play

One of the learning algorithms implemented in Nashpy is called Stochastic fictitious play, this is implemented as a
method on the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [0, 2]])
>>> B = np.array([[2, 0], [1, 3]])
>>> game = nash.Game(A, B)

The stochastic_fictitious_play method returns a generator of a given collection of learning steps, comprising
of the play counts and the mixed strategy of each player:

>>> np.random.seed(0)
>>> iterations = 500
>>> play_counts_and_distributions = game.stochastic_fictitious_
→˓play(iterations=iterations)
>>> for play_counts, distributions in play_counts_and_distributions:
... row_play_counts, column_play_counts = play_counts
... row_distributions, column_distributions = distributions
... print(row_play_counts, column_play_counts, row_distributions, column_
→˓distributions)
[0 0] [0 0] None None
[1. 0.] [0. 1.] [9.99953841e-01 4.61594628e-05] [0.501447 0.498553]
...
[498. 1.] [497. 2.] [1.00000000e+00 1.07557011e-13] [9.99999998e-01 2.32299935e-09]
[499. 1.] [498. 2.] [1.00000000e+00 1.17304491e-13] [9.99999998e-01 2.18403537e-09]

Note that this process is stochastic:

>>> np.random.seed(1)
>>> play_counts_and_distributions = game.stochastic_fictitious_
→˓play(iterations=iterations)
>>> for play_counts, distributions in play_counts_and_distributions:
... row_play_counts, column_play_counts = play_counts
... row_distributions, column_distributions = distributions
... print(row_play_counts, column_play_counts)
[0 0] [0 0]
[1. 0.] [1. 0.]
...
[499. 0.] [499. 0.]
[500. 0.] [500. 0.]

It is also possible to pass a play_counts variable to give a starting point for the algorithm:

>>> np.random.seed(0)
>>> play_counts = (np.array([0., 500.]), np.array([0., 500.]))
>>> play_counts_and_distributions = game.stochastic_fictitious_
→˓play(iterations=iterations, play_counts=play_counts)
>>> for play_counts, distributions in play_counts_and_distributions:
... row_play_counts, column_play_counts = play_counts
... row_distributions, column_distributions = distributions

(continues on next page)

12 Chapter 2. How to

Nashpy Documentation, Release 0.0.40

(continued from previous page)

... print(row_play_counts, column_play_counts)

...
[0. 500.] [0. 500.]
[0. 501.] [0. 501.]
...
[0. 999.] [0. 999.]
[0. 1000.] [0. 1000.]

A value of etha and epsilon_bar can be passed. See the Stochastic fictitious play reference section for more infor-
mation. The default values for etha and epsilon bar are 10−1 and 10−2 respectively:

>>> np.random.seed(0)
>>> etha = 10**-2
>>> epsilon_bar = 10**-3
>>> play_counts_and_distributions = game.stochastic_fictitious_
→˓play(iterations=iterations, etha=etha, epsilon_bar=epsilon_bar)
>>> for play_counts, distributions in play_counts_and_distributions:
... row_play_counts, column_play_counts = play_counts
... row_distributions, column_distributions = distributions
... print(row_play_counts, column_play_counts)
...
[0 0] [0 0]
[1. 0.] [0. 1.]
...
[498. 1.] [497. 2.]
[499. 1.] [498. 2.]

Note that for some large valued input matrices a numerical error can occur:

>>> A = np.array([[113, 65, 112], [141, 93, -56], [120, 73, -76]])
>>> B = np.array([[-113, -65, -112], [-141, -93, 56], [-120, -73, 76]])
>>> game = nash.Game(A, B)
>>> iterations = 500
>>> play_counts_and_distributions = tuple(game.stochastic_fictitious_
→˓play(iterations=iterations))
Traceback (most recent call last):
...
ValueError: The matrix with values ranging from -76 to 141...

This can usually addressed by an affine scaling of the matrices:

>>> A = A / 10
>>> B = B / 10
>>> game = nash.Game(A, B)
>>> play_counts_and_distributions = game.stochastic_fictitious_
→˓play(iterations=iterations, etha=etha, epsilon_bar=epsilon_bar)

2.10. Use stochastic fictitious play 13

Nashpy Documentation, Release 0.0.40

2.11 Use replicator dynamics

One of the learning algorithms implemented in Nashpy is called Replicator dynamics, this is implemented as a method
on the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 2], [4, 2]])
>>> game = nash.Game(A)

The replicator_dynamics method returns the strategies of the row player over time:

>>> game.replicator_dynamics()
array([[0.5 , 0.5],

[0.49875032, 0.50124968],
[0.49750377, 0.50249623],

...
[0.10199196, 0.89800804],
[0.10189853, 0.89810147],
[0.10180527, 0.89819473]])

It is also possible to pass a y0 variable in order to assign a starting strategy. Otherwise the probability is divided equally
amongst all possible actions. Passing a timepoints variable gives the algorithm a sequence of timepoints over which
to calculate the strategies:

>>> y0 = np.array([0.9, 0.1])
>>> timepoints = np.linspace(0, 10, 1000)
>>> game.replicator_dynamics(y0=y0, timepoints=timepoints)
array([[0.9 , 0.1],

[0.89918663, 0.10081337],
[0.89836814, 0.10163186],

...
[0.14109126, 0.85890874],
[0.1409203 , 0.8590797],
[0.14074972, 0.85925028]])

2.12 Use replicator dynamics with mutation

Given a matrix 𝑄 such that 𝑄𝑖𝑗 gives the probability that an individual of type i mutates to an individual of type j, the
replicator dynamics equation with mutation can be solved using the following:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 2], [4, 2]])
>>> Q = np.array([[9 / 10, 1 / 10], [1 / 5, 4 / 5]])
>>> game = nash.Game(A)
>>> game.replicator_dynamics(mutation_matrix=Q)
array([[0.5 , 0.5],

[0.50049813, 0.49950187],
[0.50099155, 0.49900845],
...,

(continues on next page)

14 Chapter 2. How to

Nashpy Documentation, Release 0.0.40

(continued from previous page)

[0.55278206, 0.44721794],
[0.5527821 , 0.4472179],
[0.55278214, 0.44721786]])

2.13 Use asymmetric replicator dynamics

This algorithm that is implemented in Nashpy is called Asymmetric replicator dynamics and is implemented as a
method on the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 2], [4, 2]])
>>> B = np.array([[1, 3], [2, 4]])
>>> game = nash.Game(A, B)

The asymmetric_replicator_dynamics method returns the strategies of both the row player and the column player
over time:

>>> xs, ys = game.asymmetric_replicator_dynamics()
>>> xs
array([[0.5 , 0.5],

[0.49875..., 0.50124...],
[0.49752..., 0.50247...],
...,
[0.41421..., 0.58578...],
[0.41421..., 0.58578...],
[0.41421..., 0.58578...]])

>>> ys
array([[5.00000...e-01, 5.00000...e-01],

[4.94995...e-01, 5.05004...e-01],
[4.89991...e-01, 5.10008...e-01],
...,
[2.28749...e-09, 9.99999...e-01],
[2.24298...e-09, 9.99999...e-01],
[2.19926...e-09, 9.99999...e-01]])

It is also possible to pass x0 and y0 arguments to assign the initial strategy to be played. Otherwise the probability is
divided equally amongst all possible actions for both x0 and y0. Additionally, a timepoints argument may be passed
that gives the algorithm a sequence of timepoints over which to calculate the strategies.

>>> x0 = np.array([0.4, 0.6])
>>> y0 = np.array([0.9, 0.1])
>>> timepoints = np.linspace(0, 10, 1000)
>>> xs, ys = game.asymmetric_replicator_dynamics(x0=x0, y0=y0, timepoints=timepoints)
>>> xs
array([[0.4 , 0.6],

[0.39784..., 0.60215...],
[0.39569..., 0.60430...],
...,
[0.17411..., 0.82588...],

(continues on next page)

2.13. Use asymmetric replicator dynamics 15

Nashpy Documentation, Release 0.0.40

(continued from previous page)

[0.17411..., 0.82588...],
[0.17411..., 0.82588...]])

>>> ys
array([[9.00000...e-01, 1.00000...e-01],

[8.98183...e-01, 1.01816...e-01],
[8.96338...e-01, 1.03661...e-01],
...,
[1.86696...e-08, 9.99999...e-01],
[1.82868...e-08, 9.99999...e-01],
[1.79139...e-08, 9.99999...e-01]])

2.14 Use Moran processes

Moran processes are implemented in Nashpy as a method on the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 2]])
>>> game = nash.Game(A)

The moran_process method returns a generator of a given collection of generations:

>>> np.random.seed(0)
>>> generations = game.moran_process(initial_population=(0, 0, 1))
>>> for population in generations:
... print(population)
[0 0 1]
[0 1 1]
[0 1 1]
...
[0 1 1]
[1 1 1]

Note that this process is stochastic:

>>> np.random.seed(2)
>>> generations = game.moran_process(initial_population=(0, 0, 1))
>>> for population in generations:
... print(population)
[0 0 1]
[0 0 1]
[0 0 0]

It is possible to pass a mutation_probability to the process in which case it will not terminate:

>>> np.random.seed(2)
>>> number_of_generations = 5
>>> mutation_probability = 1
>>> generations = game.moran_process(initial_population=(0, 0, 1), mutation_
→˓probability=mutation_probability)
>>> for _ in range(number_of_generations):

(continues on next page)

16 Chapter 2. How to

Nashpy Documentation, Release 0.0.40

(continued from previous page)

... print(next(generations))
[0 0 1]
[1 0 1]
[1 1 1]
[0 1 1]
[0 1 0]

Currently, only non-negative valued matrices are supported:

>>> A = np.array([[3, -1], [1, 2]])
>>> game = nash.Game(A)
>>> generations = game.moran_process(initial_population=(0, 0, 1))
>>> for population in generations:
... print(population)
Traceback (most recent call last):
...
ValueError: Only non negative valued payoff matrices are currently supported

2.15 Obtain fixation probabilities

Using the implemented Moran process <how-to-use-moran_process> the fixation probabilities can be approximated
using a method on the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 2]])
>>> game = nash.Game(A)

The fixation method returns a dictionary mapping the final states to the probabilities:

>>> np.random.seed(0)
>>> probabilities = game.fixation_probabilities(initial_population=(0, 1, 1, 1),␣
→˓repetitions=200)
>>> probabilities
{(1, 1, 1, 1): 0.765, (0, 0, 0, 0): 0.235}

This above shows that approximately (estimated over 200 iterations) 23.5 % of the time the first strategy will take over
a population with a total of 4 individuals (when the initial population begins with 3 individuals of the other type).

2.16 Obtain a repeated game

Given a game in Nashpy it is possible to create a new game by repeating it as described in Repeated Games:

>>> import nashpy as nash
>>> import nashpy.repeated_games
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> repeated_matching_pennies = nash.repeated_games.obtain_repeated_game(game=matching_

(continues on next page)

2.15. Obtain fixation probabilities 17

Nashpy Documentation, Release 0.0.40

(continued from previous page)

→˓pennies, repetitions=2)
>>> repeated_matching_pennies
Zero sum game with payoff matrices:

Row player:
[[2. 2. 2. ... 0. -2. -2.]
[2. 2. 2. ... 0. -2. -2.]
[2. 2. 2. ... 0. -2. -2.]
...
[0. 0. 0. ... 2. 0. 2.]
[-2. -2. -2. ... 0. 2. 0.]
[-2. -2. -2. ... 2. 0. 2.]]

Column player:
[[-2. -2. -2. ... 0. 2. 2.]
[-2. -2. -2. ... 0. 2. 2.]
[-2. -2. -2. ... 0. 2. 2.]
...
[0. 0. 0. ... -2. 0. -2.]
[2. 2. 2. ... 0. -2. 0.]
[2. 2. 2. ... -2. 0. -2.]]

Note, that these games can become large even for small values of repetitions. The above game has payoff matrices
with size:

>>> repeated_matching_pennies.payoff_matrices[0].shape
(32, 32)

When studying these large games direct computation of equilibria is unlikely to be computationally efficient. Instead
learning algorithms should be used.

It is also to directly obtain a generator containing the strategies, which are mapping from histories of play to actions:

>>> strategies = nash.repeated_games.obtain_strategy_space(A=A, repetitions=2)
>>> next(strategies)
{((), ()): (1.0, 0.0), ((0,), (0,)): (1.0, 0.0), ((0,), (1,)): (1.0, 0.0), ((1,), (0,)):␣
→˓(1.0, 0.0), ((1,), (1,)): (1.0, 0.0)}

2.17 Use Moran processes on replacement graph

The Moran process method on the Game class can take an replacement_stochastic_matrix which defines the
replacement graph as described in [Ohtsuki2007]:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 2]])
>>> game = nash.Game(A)

In this case, the moran_process method returns a generator of a given collection of generations where individuals
replace individuals as with probability proportional to the weighted directed replacement graph (in the example below,
there are actually two disconnected components):

18 Chapter 2. How to

Nashpy Documentation, Release 0.0.40

>>> np.random.seed(0)
>>> replacement_stochastic_matrix = np.array(((1 / 2, 1 / 2, 0, 0), (1 / 2, 1 / 2, 0, 0),
→˓ (0, 0, 1 / 2, 1 / 2), (0, 0, 1 / 2, 1 / 2)))
>>> generations = game.moran_process(initial_population=(0, 1, 1, 0), replacement_
→˓stochastic_matrix=replacement_stochastic_matrix)
>>> for population in generations:
... print(population)
[0 1 1 1]
[0 1 1 1]
[0 1 1 1]
[0 1 1 1]
[0 1 1 1]
[0 1 1 1]
[0 1 1 1]
[0 1 1 1]
[0 0 1 1]

2.18 Use Moran processes on interaction graph

The Moran process method on the Game class can take an interaction_graph_adjacency_matrix which defines
the interaction graph as described in [Ohtsuki2007]:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 2]])
>>> game = nash.Game(A)

In this case, the moran_process method returns a generator of a given collection of generations where individuals
interact if and only if they are adjacent on the interaction graph (in the example below, the individuals are placed on
a cycle and only interact with the successive individuals except for the last individual who interacts with everyone
including themself):

>>> np.random.seed(0)
>>> interaction_graph_adjacency_matrix = np.array(((0, 1, 0), (0, 0, 1), (1, 1, 1)))
>>> generations = game.moran_process(initial_population=(0, 0, 1), interaction_graph_
→˓adjacency_matrix=interaction_graph_adjacency_matrix)
>>> for population in generations:
... print(population)
[0 1 1]
[0 1 1]
[0 1 1]
...
[0 1 1]
[1 1 1]

2.18. Use Moran processes on interaction graph 19

Nashpy Documentation, Release 0.0.40

20 Chapter 2. How to

CHAPTER

THREE

NASHPY GAME THEORY TEXT BOOK

3.1 Normal Form Games

3.1.1 Motivating example: Coordination Game

Game theory is the study of interactive decision making. One example of this is the following situation:

Two friends must decide what movie to watch at the cinema. Alice would like to watch a sport movie and
Bob would like to watch a comedy. Importantly, they would both rather spend their evening together than
apart.

To quantify this mathematically, numeric values are associated to the 4 possible outcomes:

1. Alice watches a sport movie, Bob watches a comedy: Alice receives a utility of 1 and Bob a utility of 1.

2. Alice watches a comedy, Bob watches a sport movie: Alice receives a utility of 0 and Bob a utility of 0.

3. Alice and Bob both watch a sport movie: Alice receives a utility of 3 and Bob a utility of 2.

4. Alice and Bob both watch a comedy: Alice receives a utility of 2 and Bob a utility of 3.

This particular example will be represented using two matrices.

𝐴 will represent the utilities of Alice:

𝐴 =

(︂
3 1
0 2

)︂
𝐵 will represent the utilities of Bob

𝐵 =

(︂
2 1
0 3

)︂
Alice is referred to as the row player and Bob as the column player:

• The row player chooses which row of the matrices the player will gain their utilities.

• The column player chooses which column of the matrices the player will gain their utilities.

This representation of the strategic interaction between Alice and Bob is called a Normal Form Game

21

Nashpy Documentation, Release 0.0.40

3.1.2 Definition of Normal Form Game

An 𝑁 player normal form game consists of:

• A finite set of 𝑁 players.

• Action set for the players: {𝒜1,𝒜2, . . .𝒜𝑁}

• Payoff functions for the players: 𝑢𝑖 : 𝒜1 ×𝒜2 · · · × 𝒜𝑁 → R

Question

For the Coordination game:

1. What is the finite set of players?

2. What are the action sets?

3. What are the payoff functions?

Answer

1. The two players are Alice and Bob (𝑁 = 2).

2. The action sets are: 𝒜1 = 𝒜2 = {Sport,Comedy}

3. The payoff functions are given by the matrices 𝐴,𝐵 where the first row or column corresponds to Sport and the
second row or column corresponds to Comedy.

𝑢1(⊣1,⊣2) = 𝐴⊣1,⊣2
𝑢2(⊣1,⊣2) = 𝐵⊣1,⊣2

where ⊣1 ∈ 𝒜1 and ⊣2 ∈ 𝒜2.

3.1.3 Definition of a Zero Sum Game

A two player normal form game with payoff matrices 𝐴,𝐵 is called zero sum if and only if:

𝐴 = −𝐵

Question

Is the Coordination game zero sum?

Answer

𝐴 ̸= −𝐵 so the Coordination game is not Zero sum.

22 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

3.1.4 Examples of other Normal Form Games

Prisoners Dilemma

Assume two thieves have been caught by the police and separated for questioning. If both thieves cooperate and do not
divulge any information they will each get a short sentence (with a utility value of 3). If one defects they are offered a
deal (utility value of 5) while the other thief will get a long sentence (utility value of 0). If they both defect they both
get a medium length sentence (utility value of 1).

Question

For the Prisoners Dilemma

1. What is the finite set of players?

2. What are the action sets?

3. What are the payoff functions?

4. Is the game zero sum?

Answer

1. The two players are the two thiefs (𝑁 = 2).

2. The action sets are: 𝒜1 = 𝒜2 = {Cooperate,Defect}

3. The payoff functions are given by the matrices 𝐴,𝐵 where the first row or column corresponds to Cooperate and
the second row or column corresponds to Defect.

𝐴 =

(︂
3 0
5 1

)︂
𝐵 =

(︂
3 5
0 1

)︂
𝑢1(⊣1,⊣2) = 𝐴⊣1,⊣2

𝑢2(⊣1,⊣2) = 𝐵⊣1,⊣2

where ⊣1 ∈ 𝒜1 and ⊣2 ∈ 𝒜2.

4. The game is not Zero sum as 𝐴 ̸= −𝐵.

Hawk Dove Game

Suppose two birds of prey must share a limited resource. The birds can act like a hawk or a dove. Hawks always act
aggressively over the resource to the point of exterminating another hawk (both hawks get a utility value of 0) and/or
take a majority of the resource from a dove (the hawk gets a utility value of 3 and the dove a utility value of 1). Two
doves can share the resource (both getting a utility value of 2).

Question

For the Hawk Dove Game

1. What is the finite set of players?

2. What are the action sets?

3. What are the payoff functions?

4. Is the game zero sum?

3.1. Normal Form Games 23

Nashpy Documentation, Release 0.0.40

Answer

1. The two players are two birds 𝑁 = 2.

2. The action sets are: 𝒜1 = 𝒜2 = {Hawk,Dove}

3. The payoff functions are given by the matrices 𝐴,𝐵 where the first row or column corresponds to Hawk and the
second row or column corresponds to Dove.

𝐴 =

(︂
0 3
1 2

)︂
𝐵 =

(︂
0 1
3 2

)︂
𝑢1(⊣1,⊣2) = 𝐴⊣1,⊣2 𝑢2(⊣1,⊣2) = 𝐵⊣1,⊣2

where ⊣1 ∈ 𝒜1 and ⊣2 ∈ 𝒜2.

4. The game is not Zero sum as 𝐴 ̸= −𝐵.

Pigs

Consider two pigs. One dominant pig and one subservient pig. These pigs share a pen. There is a lever in the pen that
delivers food but if either pig pushes the lever it will take them a little while to get to the food.

• If the dominant pig pushes the lever, the subservient pig has some time to eat most of the food before being
pushed out of the way. The dominant pig gets a utility value of 2 and the subservient pig gets a utility value of 3.

• If the subservient pig pushes the lever, the dominant pig will eat all the food. The dominant pig gets a utility
value of 6 and the subservient pig gets a utility value of -1.

• If both pigs push the lever, the subservient pig will a small amount of the food. The dominant pig gets a utility
value of 4 and the subservient pig gets a utility value of 2.

• If both pigs do not push the lever they both get a utility value of 0.

Question

For the Pigs Game

1. What is the finite set of players?

2. What are the action sets?

3. What are the payoff functions?

4. Is the game zero sum?

Answer

1. The two players are dominant and a subservient pig 𝑁 = 2.

2. The action sets are: 𝒜1 = 𝒜2 = {Push,Do not push}

3. The payoff functions are given by the matrices 𝐴,𝐵 where the first row or column corresponds to Push and the
second row or column corresponds to Do not push.

𝐴 =

(︂
4 2
6 0

)︂
𝐵 =

(︂
2 3
−1 0

)︂

24 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

𝑢1(⊣1,⊣2) = 𝐴⊣1,⊣2 𝑢2(⊣1,⊣2) = 𝐵⊣1,⊣2

where ⊣1 ∈ 𝒜1 and ⊣2 ∈ 𝒜2.

4. The game is not Zero sum as 𝐴 ̸= −𝐵.

Matching Pennies

Consider two players who can choose to display a coin either Heads facing up or Tails facing up. If both players show
the same face then player 1 wins, if not then player 2 wins. Winning corresponds to a numeric value of 1 and losing a
numeric value of -1.

Question

For the Matching Pennies game:

1. What is the finite set of players?

2. What are the action sets?

3. What are the payoff functions?

4. Is the game zero sum?

Answer

1. There are two players 𝑁 = 2.

2. The action sets are: 𝒜1 = 𝒜2 = {Heads,Tails}

3. The payoff functions are given by the matrices 𝐴,𝐵 where the first row or column corresponds to Heads and the
second row or column corresponds to Tails.

𝐴 =

(︂
1 −1
−1 1

)︂
𝐵 =

(︂
−1 1
1 −1

)︂
𝑢1(⊣1,⊣2) = 𝐴⊣1,⊣2

𝑢2(⊣1,⊣2) = 𝐵⊣1,⊣2

where ⊣1 ∈ 𝒜1 and ⊣2 ∈ 𝒜2.

4. The game is Zero sum as 𝐴 = −𝐵.

3.1.5 Using Nashpy

See Create a Normal Form Game for guidance of how to use Nashpy to create a Normal form game.

3.1. Normal Form Games 25

Nashpy Documentation, Release 0.0.40

3.2 Strategies

3.2.1 Motivating example: Strategy for Rock Paper Scissors

The game of Rock Paper Scissors is a common parlour game between two players who pick 1 of 3 options simultane-
ously:

1. Rock which beats Scissors;

2. Paper which beats Rock;

3. Scissors which beats Paper

Thus, this corresponds to a Normal Form Game with:

1. Two players (𝑁 = 2).

2. The action sets are: 𝒜1 = 𝒜2 = {Rock,Paper,Scissors}

3. The payoff functions are given by the matrices 𝐴,𝐵 where the first row or column corresponds to Rock, the
second to Paper and the third to Scissors.

𝐴 =

⎛⎝ 0 −1 1
1 0 −1
−1 1 0

⎞⎠
𝐵 = −𝐴 =

⎛⎝ 0 1 −1
−1 0 1
1 −1 0

⎞⎠
If we consider two players, assume the row player always chooses Paper and the column player randomly chooses from
Rock and Paper (with equal probability) what is the expected outcome of any one game between them?

• The expected score of the row player will be: 1× 1/2 + 0× 1/2 = 1/2.

• The expected score of the column player will be: −1× 1/2 + 0× 1/2 = −1/2.

In Game theoretic terms, the behaviours described above are referred to as strategies. Strategies map information to
actions. In this particular case, the only available information is the game itself and the actions are 𝒜1 = 𝒜2.

3.2.2 Definition of a strategy in a normal form game

A strategy for a player with action set 𝒜 is a probability distribution over elements of 𝒜.

Typically a strategy is denoted by 𝜎 ∈ [0, 1]
|𝒜|
R so that:

𝒜∑︁
𝑖=1

𝜎𝑖 = 1

Question

For Rock Papoer Scissors:

1. What is the strategy 𝜎𝑟 that corresponds to the row player’s behaviour of always choosing Paper?

2. What is the strategy 𝜎𝑐 that corresponds to the column player’s behaviour of always randomly choosing between
Rock and Paper?

26 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Answer

1. 𝜎𝑟 = (0, 1, 0)

2. 𝜎𝑐 = (1/2, 1/2, 0)

3.2.3 Definition of support of a strategy

For a given strategy 𝜎, the support of 𝜎: 𝒮(𝜎) is the set of actions 𝑖 ∈ 𝒜 for which 𝜎𝑖 > 0.

Question

For the following strategies 𝜎 obtain 𝒮(𝜎):

1. 𝜎 = (1, 0, 0)

2. 𝜎 = (1/3, 1/3, 1/3)

3. 𝜎 = (2/5, 0, 3/5)

Answer

1. 𝒮(𝜎) = {1}

2. 𝒮(𝜎) = {1, 2, 3}

3. 𝒮(𝜎) = {1, 3}

Note here that as no specific action sets are given the integers are used.

3.2.4 Strategy spaces for Normal form Games

Given a set of actions 𝒜 the space of all strategies 𝒮 is defined as:

𝒮 =

{︃
𝜎 ∈ [0, 1]

|𝒜|
R

⃒⃒⃒⃒
⃒

𝒜∑︁
𝑖=1

𝜎𝑖 = 1

}︃

3.2.5 Calculation of expected utilities

Considering a game (𝐴,𝐵) ∈ R(𝑚×𝑛)2 , if 𝜎𝑟 and 𝜎𝑐 are the strategies for the row/column player, the expected utilities
are:

• For the row player: 𝑢𝑟(𝜎𝑟, 𝜎𝑐) =
∑︀𝑚

𝑖=1

∑︀𝑛
𝑗=1 𝐴𝑖𝑗𝜎𝑟𝑖𝜎𝑐𝑗

• For the column player: 𝑢𝑐(𝜎𝑟, 𝜎𝑐) =
∑︀𝑚

𝑖=1

∑︀𝑛
𝑗=1 𝐵𝑖𝑗𝜎𝑟𝑖𝜎𝑐𝑗

This corresponds to taking the expectation over the probability distributions 𝜎𝑟 and 𝜎𝑐.

Question

For the Rock Papoer Scissors:

3.2. Strategies 27

Nashpy Documentation, Release 0.0.40

What are the expected utilities to both players if 𝜎𝑟 = (1/3, 0, 2/3) and 𝜎𝑐 = (1/3, 1/3, 1/3).

Answer

𝑢𝑟(𝜎𝑟, 𝜎𝑐) =1/3(1/3× 0 + 1/3×−1 + 1/3× 1) (3.1)
+ 0(1/3× 1 + 1/3× 0 + 1/3×−1)(3.2)
+ 2/3(1/3×−1 + 1/3× 1 + 1/3× 0)(3.3)

=0(3.4)

𝑢𝑐(𝜎𝑟, 𝜎𝑐) =1/3(1/3× 0 + 1/3× 1 + 1/3×−1) (3.5)
+ 0(1/3×−1 + 1/3× 0 + 1/3× 1)(3.6)
+ 2/3(1/3× 1 + 1/3×−1 + 1/3× 0)(3.7)

=0(3.8)

3.2.6 Linear algebraic calculation of expected utilities

Given a game (𝐴,𝐵) ∈ R(𝑚×𝑛)2 , considering 𝜎𝑟 and 𝜎𝑐 as vectors inR𝑚 andR𝑛. The expected utilities can be written
as the matrix vector product:

• For the row player: 𝑢𝑟(𝜎𝑟, 𝜎𝑐) = 𝜎𝑟𝐴𝜎𝑇
𝑐

• For the column player: 𝑢𝑐(𝜎𝑟, 𝜎𝑐) = 𝜎𝑟𝐵𝜎𝑇
𝑐

Question

For Rock Paper Scissors:

Calculate the expected utilities to both players if 𝜎𝑟 = (1/3, 0, 2/3) and 𝜎𝑐 = (1/3, 1/3, 1/3) using a linear algebraic
approach.

Answer

𝑢𝑟(𝜎𝑟, 𝜎𝑐) = (1/3, 0, 2/3)𝐴

⎛⎝1/3
1/3
1/3

⎞⎠ = (−2/3, 1/3, 1/3)

⎛⎝1/3
1/3
1/3

⎞⎠ = 0

𝑢𝑐(𝜎𝑟, 𝜎𝑐) = (1/3, 0, 2/3)𝐵

⎛⎝1/3
1/3
1/3

⎞⎠ = (2/3,−1/3,−1/3)

⎛⎝1/3
1/3
1/3

⎞⎠ = 0

28 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

3.2.7 Using Nashpy

See Calculate utilities for guidance of how to use Nashpy to calculate utilities.

3.3 Best responses

3.3.1 Motivating example: Best Responses in Matching Pennies

Considering the game Matching Pennies:

𝐴 =

(︂
1 −1
−1 1

)︂
𝐵 =

(︂
−1 1
1 −1

)︂
If the row player knows that the column player is playing the strategy 𝜎𝑐 = (0, 1) the utility of the row player is
maximised by playing 𝜎𝑟 = (0, 1).

In this case 𝜎𝑟 is referred to as a best response to 𝜎𝑐.

Alternatively, if the column player knows that the row player is playing the strategy 𝜎𝑟 = (0, 1) the column player’s
best response is 𝜎𝑐 = (1, 0).

3.3.2 Definition of a best response in a normal form game

In a two player game (𝐴,𝐵) ∈ R𝑚×𝑛2 a strategy 𝜎*
𝑟 of the row player is a best response to a column players’ strategy

𝜎𝑐 if and only if:

𝜎*
𝑟 = argmax𝜎𝑟∈𝒮1

𝜎𝑟𝐴𝜎𝑇
𝑐 .

Where 𝒮1 denotes the space of all strategies for the first player.

Similarly a mixed strategy 𝜎*
𝑐 of the column player is a best response to a row players’ strategy 𝜎𝑟 if and only if:

𝜎*
𝑐 = argmax𝜎𝑐∈𝒮2

𝜎𝑟𝐵𝜎𝑇
𝑐 .

Question

For the Prisoners Dilemma:

What is the row player’s best response to either of the actions of the column player?

Answer

Recalling that 𝐴 is given by:

𝐴 =

(︂
3 0
5 1

)︂
Against the first action of the column player the best response is to choose the second action which gives a utility of 5.
This can be expressed as:

argmax𝑖∈𝒜1
𝐴𝑖1 = 2

3.3. Best responses 29

Nashpy Documentation, Release 0.0.40

Against the second action of the column player the best response is to choose the second action which gives a utility of
1. This can be expressed as:

argmax𝑖∈𝒜1
𝐴𝑖2 = 2

The row player’s best response to either of the actions of the column player is 𝜎*
𝑟 = (1, 0). This can be expressed as:

argmax𝑖∈𝒜1
𝐴𝑖𝑗 = 2 for all 𝑗 ∈ 𝒜2

3.3.3 Generic best responses in 2 by 2 games

In two player normal form games with |𝐴1| = |𝐴2| = 2: a 2 by 2 game, the utility of a row player playing𝜎𝑟 = (𝑥, 1−𝑥)
against a strategy 𝜎𝑐 = (𝑦, 1− 𝑦) is linear in 𝑥:

𝑢𝑟(𝜎𝑟, 𝜎𝑐) = (𝑥, 1− 𝑥)𝐴(𝑦, 1− 𝑦)𝑇

= 𝐴11𝑥𝑦 +𝐴12𝑥(1− 𝑦) +𝐴21(1− 𝑥)𝑦 +𝐴22(1− 𝑥)(1− 𝑦)

= 𝑎𝑥+ 𝑏

where:

𝑎 = 𝐴11𝑦 +𝐴12(1− 𝑦)−𝐴21𝑦 −𝐴22(1− 𝑦)

𝑏 = 𝐴21𝑦 +𝐴22(1− 𝑦)

This observation allows us to obtain the best response 𝜎*
𝑟 against any 𝜎𝑐 = (𝑦, 1− 𝑦).

For example, consider Matching Pennies. Below is a plot of 𝑢𝑟(𝜎𝑟, 𝜎𝑐) as a function of 𝑦 for 𝜎𝑟 ∈ {(1, 0), (0, 1)}.

Given that the utilities in both cases are linear, the best response to any value of 𝑦 ̸= 1/2 is either (1, 0) or (0, 1). The
best response 𝜎*

𝑟 is given by:

𝜎*
𝑟 =

⎧⎪⎨⎪⎩
(1, 0), if 𝑦 > 1/2

(0, 1), if 𝑦 < 1/2

indifferent, if 𝑦 = 1/2

Question

For the Matching Pennies game:

What is the column player’s best response as a function of 𝑥 where 𝜎𝑟 = (𝑥, 1− 𝑥).

Answer

Recalling that 𝐵 is given by:

𝐵 =

(︂
−1 1
1 −1

)︂
This gives:

𝑢𝑐(𝜎𝑟, (1, 0)) =− 𝑥+ (1− 𝑥) = 1− 2𝑥

𝑢𝑐(𝜎𝑟, (0, 1)) =𝑥− (1− 𝑥) = −1 + 2𝑥

30 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

0.0 0.2 0.4 0.6 0.8 1.0
c = (y, 1 y)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Utility to row player

(A T
c)1

(A T
c)2

3.3. Best responses 31

Nashpy Documentation, Release 0.0.40

Here is a plot of the utilities:

0.0 0.2 0.4 0.6 0.8 1.0
r = (x, 1 x)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Utility to column player

(rB)1
(rB)2

The best response is given by:

𝜎*
𝑐 =

⎧⎪⎨⎪⎩
(1, 0), if 𝑥 < 1/2

(0, 1), if 𝑥 > 1/2

indifferent, if 𝑥 = 1/2

3.3.4 General condition for a best response

In a two player game (𝐴,𝐵) ∈ R𝑚×𝑛2 a strategy 𝜎*
𝑟 of the row player is a best response to a column players’ strategy

𝜎𝑐 if and only if:

𝜎𝑟* 𝑖 > 0 ⇒ (𝐴𝜎𝑇
𝑐)𝑖 = max𝑘∈𝒜2

(𝐴𝜎𝑇
𝑐)𝑘 for all 𝑖 ∈ 𝒜1

32 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Proof

(𝐴𝜎𝑇
𝑐)𝑖 is the utility of the row player when they play their 𝑖th action. Thus:

𝜎𝑟𝐴𝜎𝑇
𝑐 =

𝑚∑︁
𝑖=1

𝜎𝑟𝑖(𝐴𝜎𝑇
𝑐)𝑖

Let 𝑢 = max𝑘(𝐴𝜎𝑇
𝑐)𝑘 giving:

𝜎𝑟𝐴𝜎𝑇
𝑐 =

𝑚∑︁
𝑖=1

𝜎𝑟𝑖(𝑢− 𝑢+ (𝐴𝜎𝑇
𝑐)𝑖)

=

𝑚∑︁
𝑖=1

𝜎𝑟𝑖𝑢−
𝑚∑︁
𝑖=1

𝜎𝑟𝑖(𝑢− (𝐴𝜎𝑇
𝑐)𝑖)

= 𝑢−
𝑚∑︁
𝑖=1

𝜎𝑟𝑖(𝑢− (𝐴𝜎𝑇
𝑐)𝑖)

We know that 𝑢− (𝐴𝜎𝑇
𝑐)𝑖 ≥ 0, thus the largest 𝜎𝑟𝐴𝜎𝑇

𝑐 can be is 𝑢 which occurs if and only if 𝜎𝑟𝑖 > 0 ⇒ (𝐴𝜎𝑇
𝑐)𝑖 = 𝑢

as required.

Question

For the Rock Paper Scissors game:

Which of the following pairs of strategies are best responses to each other:

1. 𝜎𝑟 = (0, 0, 1) and 𝜎𝑐 = (0, 1/2, 1/2)

2. 𝜎𝑟 = (1/3, 1/3, 1/3) and 𝜎𝑐 = (0, 1/2, 1/2)

3. 𝜎𝑟 = (1/3, 1/3, 1/3) and 𝜎𝑐 = (1/3, 1/3, 1/3)

Answer

Recalling that 𝐴 and 𝐵 are given by:

𝐴 =

⎛⎝ 0 −1 1
1 0 −1
−1 1 0

⎞⎠

𝐵 = −𝐴 =

⎛⎝ 0 1 −1
−1 0 1
1 −1 0

⎞⎠
We can apply the best response condition to each pairs of strategies:

1. 𝐴𝜎𝑇
𝑐 =

⎛⎝ 0
−1/2
1/2

⎞⎠. max(𝐴𝜎𝑇
𝑐) = 1/2. The only 𝑖 for which 𝜎𝑟𝑖 > 0 is 𝑖 = 3 and (𝐴𝜎𝑇

𝑐)3 = max(𝐴𝜎𝑇
𝑐) thus

𝜎𝑟 is a best response to 𝜎𝑐. 𝜎𝑟𝐵 = (1,−1, 0). max(𝜎𝑟𝐵) = 1. The values of 𝑖 for which 𝜎𝑐𝑖 > 0 are 𝑖 = 2
and 𝑖 = 3 but (𝜎𝑟𝐵)2 ̸= max(𝜎𝑟𝐵) thus 𝜎𝑐 is not a best response to 𝜎𝑟.

2. 𝐴𝜎𝑇
𝑐 =

⎛⎝ 0
−1/2
1/2

⎞⎠. max(𝐴𝜎𝑇
𝑐) = 1/2. The values of 𝑖 for which 𝜎𝑟𝑖 > 0 are 𝑖 = 1, 𝑖 = 2 and 𝑖 = 3 however,

(𝐴𝜎𝑇
𝑐)2 ̸= max(𝐴𝜎𝑇

𝑐) thus 𝜎𝑟 is not a best response to 𝜎𝑐. 𝜎𝑟𝐵 = (0, 0, 0). max(𝜎𝑟𝐵) = 0. The values of 𝑖
for which 𝜎𝑐𝑖 > 0 are 𝑖 = 2 and 𝑖 = 3 and (𝜎𝑟𝐵)2 = (𝜎𝑟𝐵)3 = max(𝜎𝑟𝐵) thus 𝜎𝑐 is a best response to 𝜎𝑟.

3.3. Best responses 33

Nashpy Documentation, Release 0.0.40

3. 𝐴𝜎𝑇
𝑐 =

⎛⎝0
0
0

⎞⎠. max(𝐴𝜎𝑇
𝑐) = 0. The values of 𝑖 for which 𝜎𝑟𝑖 > 0 are 𝑖 = 1, 𝑖 = 2 and 𝑖 = 3 and

(𝐴𝜎𝑇
𝑐)1 = (𝐴𝜎𝑇

𝑐)2 = (𝐴𝜎𝑇
𝑐)3 = max(𝐴𝜎𝑇

𝑐) thus 𝜎𝑟 is a best response to 𝜎𝑐. 𝜎𝑟𝐵 = (0, 0, 0). max(𝜎𝑟𝐵) = 0.
The values of 𝑖 for which 𝜎𝑐𝑖 > 0 are 𝑖 = 1, 𝑖 = 2 and 𝑖 = 3 and (𝜎𝑟𝐵)1 = (𝜎𝑟𝐵)2 = (𝜎𝑟𝐵)3 = max(𝜎𝑟𝐵)
thus 𝜎𝑐 is a best response to 𝜎𝑟.

3.3.5 Definition of Nash equilibrium

In a two player game (𝐴,𝐵) ∈ R𝑚×𝑛2, (𝜎𝑟, 𝜎𝑐) is a Nash equilibria if 𝜎𝑟 is a best response to 𝜎𝑐 and 𝜎𝑐 is a best
response to 𝜎𝑟.

3.3.6 Using Nashpy

See Check if a strategy is a best response for guidance of how to use Nashpy to check if a strategy is a best response.

3.4 Zero Sum Games

3.4.1 Motivating example: changing Rock Paper Scissors

If we modify the game of Rock Paper Scissora to add a single new strategy “Spock”:

• Spock smashes Scissors and Rock.

• Paper disproves Spock.

The other modification is that the game is no longer symmetric: only the row player can use the Well.

The mathematical representation of this game is given by:

𝐴 =

⎛⎜⎜⎝
0 −1 1
1 0 −1
−1 1 0
1 −1 1

⎞⎟⎟⎠
Is there a way that the Row player can play that guarantees a particular expected proportion of wins?

3.4.2 Optimising worst case outcomes: the min-max and max-min strategies

Given a zero sum game defined by 𝐴 ∈ R𝑚×𝑛 and a column player with strategy 𝑦 ∈ R𝑛, the row player is aiming to
find a best response strategy 𝑥 ∈ R𝑚 which corresponds to:

max
𝑥∈𝒮1

𝑥𝐴𝑦𝑇

This corresponds to finding the maximum row of 𝐴𝑦𝑇 :

max
𝑖≤𝑚

(𝐴𝑦𝑇)𝑖

The column player, through their choice of 𝑦 will be able to define the upper bound 𝑣 of max𝑖≤𝑚(𝐴𝑦𝑇)𝑖. In fact, as
the game is zero sum, there will be aiming to choose 𝑦 such that the upper bound 𝑣 is as low as possible.

34 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Thus,

max
𝑥∈𝒮1

𝑥𝐴𝑦𝑇 = max
𝑖≤𝑚

(𝐴𝑦𝑇)𝑖 = min{𝑣 ∈ R | 𝐴𝑦𝑇 ≤ ⊮𝑣}

Thus, the min-max strategy 𝑦 of the column player is a solution to the following linear program:

min
𝑦,𝑣

𝑣

Subject to:

𝐴𝑦𝑇 ≤ ⊮𝑣 (3.9)
𝑦 ∈ 𝒮2(3.10)

In this case, 𝑣 is called the min-max value of the game.

The corresponding max-min strategy 𝑥 of the row player is a solution to the following linear program:

max
𝑥,𝑢

𝑢

Subject to:

𝑥𝐴 ≥ ⊮𝑢 (3.11)
𝑥 ∈ 𝒮1(3.12)

In this case, 𝑣 is called the max-min value of the game.

For the modified rock paper scissors game the max-min strategy 𝑥 of the row player will be a solution to the following
linear program:

max
𝑥,𝑢

𝑢

Subject to:

𝑥2 − 𝑥3 + 𝑥4 ≥ 𝑢 (3.13)
−𝑥1 + 𝑥3 − 𝑥4 ≥ 𝑢(3.14)
𝑥1 − 𝑥3 + 𝑥4 ≥ 𝑢(3.15)

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1(3.16)
𝑥𝑖 ≥ 0 for all 𝑖 ∈ {1, 2, 3, 4}(3.17)

Question

For the zero sum game Matching Pennies: with payoff matrix 𝐴 =

(︂
1 −1
−1 1

)︂
.

1. What linear program is the max-min strategy 𝑥 a solution to?

2. What is the max-min strategy?

Answer

1. The max-min strategy is a solution to the following linear program:

max
𝑥,𝑢

𝑢

Subject to:

𝑥1 − 𝑥2 ≥ 𝑢 (3.18)
−𝑥1 + 𝑥2 ≥ 𝑢(3.19)
𝑥1 + 𝑥2 = 1(3.20)

𝑥𝑖 ≥ 0 for all 𝑖 ∈ {1, 2}(3.21)

3.4. Zero Sum Games 35

Nashpy Documentation, Release 0.0.40

2. Given that 𝑥1 + 𝑥2 = 1 this linear program corresponds to:

max
𝑥1,𝑢

𝑢

Subject to:

2𝑥1 − 1 ≥ 𝑢 (3.22)
−2𝑥1 + 1 ≥ 𝑢(3.23)

0 ≤ 𝑥1 ≤ 1(3.24)
(3.25)

These contraints can be rewritten as:

𝑥1 ≥ 1 + 𝑢

2
(3.26)

𝑥1 ≤ 1− 𝑢

2
(3.27)

0 ≤ 𝑥1 ≤ 1(3.28)
(3.29)

This implies that 𝑢+1
2 ≤ 𝑥1 ≤ 1−𝑢

2 which implies 𝑢 ≤ −𝑢 which is only true when 𝑢 = 0. When 𝑢 = 0 the constraints
become: 1

2 ≤ 𝑥1 ≤ 1
2 giving: 𝑥1 = 1/2.

The max-min strategy is thus: 𝑥 = (1/2, 1/2).

3.4.3 Re formulation of the linear program

In a Zero Sum Game, given a row player payoff matrix 𝐴 with 𝑚 rows and 𝑛 columns, the following linear program
will give the max-min strategy and value:

min
𝑥∈R(𝑚+1)×1

𝑐𝑥

Subject to:

𝑀ub𝑥 ≤ 𝑏ub (3.30)
𝑀eq𝑥 = 𝑏eq(3.31)

𝑥𝑖 ≥ 0 for 𝑖 ≤ 𝑚(3.32)

Where the coefficients of the linear program are defined by:

𝑐 = (0, . . . , 0⏟ ⏞
𝑚

,−1) 𝑐 ∈ {0, 1}1×(𝑚+1) (3.33)

𝑀ub =

⎛⎜⎝(−𝐴𝑇)11 . . . (−𝐴𝑇)1𝑚 1
...

. . .
... 1

(−𝐴𝑇)𝑛1 . . . (−𝐴𝑇)𝑛𝑚 1

⎞⎟⎠ 𝑀 ∈ R𝑛×(𝑚+1)(3.34)

𝑏ub = (0, . . . , 0⏟ ⏞
𝑛

)𝑇 𝑏ub ∈ {0}𝑛×1(3.35)

𝑀eq = (1, . . . , 1⏟ ⏞
𝑚

, 0) 𝑀eq ∈ {0, 1}1×(𝑚+1)(3.36)

𝑏eq = 1(3.37)
(3.38)

36 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

This reformulation is in fact how the linear program is written in Nashpy’s source code.

For the modified rock paper scissors game the coefficients of the linear system are given by:

𝑐 = (0, 0, 0, 0,−1) (3.39)

𝑀ub =

⎛⎝ 0 −1 1 −1 1
1 0 −1 1 1
−1 1. 0. −1. 1

⎞⎠(3.40)

𝑏ub =

⎛⎝0
0
0

⎞⎠(3.41)

𝑀eq = (1, 1, 1, 1, 0)(3.42)
𝑏eq = 1(3.43)

(3.44)

Question

Obtain the coefficients of the reformulated linear system for the zero sum game Matching Pennies: with payoff matrix

𝐴 =

(︂
1 −1
−1 1

)︂
.

Answer

Here are the coefficients of the reformulated linear system:

𝑐 = (0, 0,−1) (3.45)

𝑀ub =

(︂
−1 1 1
1 −1 1

)︂
(3.46)

𝑏ub =

(︂
0
0

)︂
(3.47)

𝑀eq = (1, 1, 0)(3.48)
𝑏eq = 1(3.49)

(3.50)

3.4.4 The minimax theorem

The minimax theorem [vonNeumann1928] states that if there exists optimal values of the:

1. max-min value 𝑢 and the max-min strategy 𝑥.

2. min-max value 𝑣 and the min-max strategy 𝑦.

then 𝑢 = 𝑣.

This can be proved using the Linear Program Duality Theorem.

Note that this answers the question posed at the end of Motivating example: changing Rock Paper Scissors: through a
choice of strategy the row player can ensure they obtain the value of the game which is equal to the max-min value and
the min-max value.

3.4. Zero Sum Games 37

Nashpy Documentation, Release 0.0.40

3.4.5 Using Nashpy

See Use the minimax theorem for guidance of how to use Nashpy to find the Nash equilibria of Zero sum games using
the mini max theorem.

3.5 Support enumeration

3.5.1 Motivating example: Coordination Game

In the Coordination game in how many situations do neither player have an incentive to independently change their
strategy?

Neither player having a reason to change their strategy implies that both strategies are Best responses to each other.

To identify such pairs of strategies, we will use the General condition for a best response by considering all possible
non zero valued elements 𝜎𝑟 and 𝜎𝑐.

Recall that for the Coordination game the matrices 𝐴 and 𝐵 are given by:

𝐴 =

(︂
3 1
0 2

)︂

𝐵 =

(︂
2 1
0 3

)︂
If we consider strategies that only play a single action there are two options for each strategy:

𝜎𝑟 ∈ {(1, 0), (0, 1)}

and:

𝜎𝑐 ∈ {(1, 0), (0, 1)}

We will inspect all four combinations:

• 𝜎𝑟 = (1, 0) and 𝜎𝑐 = (1, 0) which corresponds to both players playing their first action which gives:
𝑢𝑟(𝜎𝑟, 𝜎𝑐) = 3 and 𝑢𝑐(𝜎𝑟, 𝜎𝑐) = 2. If the row player where to modify their strategy (while the column player
stayed unchanged) to play the second action their utility would decrease. Likewise, if the column player were to
modify their strategy their utility would also decrease.

• 𝜎𝑟 = (1, 0) and 𝜎𝑐 = (0, 1) which corresponds to the row player playing their first action and the column player
playing their second action which gives: 𝑢𝑟(𝜎𝑟, 𝜎𝑐) = 1 and 𝑢𝑐(𝜎𝑟, 𝜎𝑐) = 1. In this case, if either player were
to move their utility would increase.

• 𝜎𝑟 = (0, 1) and 𝜎𝑐 = (1, 0) which corresponds to the row player playing their second action and the column
player playing their first action which gives: 𝑢𝑟(𝜎𝑟, 𝜎𝑐) = 0 and 𝑢𝑐(𝜎𝑟, 𝜎𝑐) = 0. In this case, if either player
were to move their utility would increase.

• 𝜎𝑟 = (0, 1) and 𝜎𝑐 = (0, 1) which corresponds to both players playing their second action which gives:
𝑢𝑟(𝜎𝑟, 𝜎𝑐) = 2 and 𝑢𝑐(𝜎𝑟, 𝜎𝑐) = 3. If the row player where to modify their strategy (while the column player
stayed unchanged) to play the second action their utility would decrease. Likewise, if the column player were to
modify their strategy their utility would also decrease.

If we now consider strategies that play both actions there is a single general form:

𝜎𝑟 = (𝑥, 1− 𝑥) for 0 < 𝑥 < 1

𝜎𝑐 = (𝑦, 1− 𝑦) for 0 < 𝑦 < 1

38 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

We can apply the General condition for a best response here.

If 𝜎𝑟 is a best response to 𝜎𝑐 then:

(𝐴𝜎𝑇
𝑐)𝑖 = max𝑘∈{1,2}(𝐴𝜎𝑇

𝑐)𝑘 for all 𝑖 ∈ {1, 2}

which gives:

3𝑦 + 1(1− 𝑦) = max𝑘∈{1,2}(𝐴𝜎𝑇
𝑐)𝑘

0𝑦 + 2(1− 𝑦) = max𝑘∈{1,2}(𝐴𝜎𝑇
𝑐)𝑘

which in turn corresponds to:

3𝑦 + 1(1− 𝑦) = 2(1− 𝑦)

𝑦 = 1/4

Thus 𝜎𝑟 = (𝑥, 1− 𝑥) with 0 < 𝑥 < 1 is a best response to 𝜎𝑐 if and only if 𝜎𝑐 = (1/4, 3/4).

We will now apply the General condition for a best response again but to the column player:

If 𝜎𝑐 is a best response to 𝜎𝑟 then:

(𝜎𝑟𝐵)𝑗 = max𝑘∈{1,2}(𝜎𝑟𝐵)𝑘 for all 𝑗 ∈ {1, 2}

which gives:

2𝑥+ 0(1− 𝑥) = max𝑘∈{1,2}(𝜎𝑟𝐵)𝑘

1𝑥+ 3(1− 𝑥) = max𝑘∈{1,2}(𝜎𝑟𝐵)𝑘

which in turn corresponds to:

2𝑥 = 𝑥+ 3(1− 𝑥)

𝑥 = 3/4

Thus 𝜎𝑐 = (𝑦, 1− 𝑦) with 0 < 𝑦 < 1 is a best response to 𝜎𝑟 if and only if 𝜎𝑟 = (3/4, 1/4).

There are 3 pairs of strategies that are best responses to each other:

• 𝜎𝑟 = (1, 0) and 𝜎𝑐 = (1, 0).

• 𝜎𝑟 = (0, 1) and 𝜎𝑐 = (0, 1).

• 𝜎𝑟 = (3/4, 1/4) and 𝜎𝑐 = (1/4, 3/4).

3.5.2 The support enumeration algorithm

The approach used in Motivating example: Coordination Game is in fact an application of a formalised algorithm
called support enumeration.

The algorithm is as follows:

For a non Degenerate 2 player game (𝐴,𝐵) ∈ R𝑚×𝑛2 the following algorithm returns all pairs of best responses:

1. For all 1 ≤ 𝑘 ≤ min(𝑚,𝑛):

2. For all pairs of support (𝐼, 𝐽) with |𝐼| = |𝐽 | = 𝑘.

3. Solve the following equations (this ensures we have best responses):∑︁
𝑖∈𝐼

𝜎𝑟𝑖𝐵𝑖𝑗 = 𝑣 for all 𝑗 ∈ 𝐽∑︁
𝑗∈𝐽

𝐴𝑖𝑗𝜎𝑐𝑗 = 𝑢 for all 𝑖 ∈ 𝐼

3.5. Support enumeration 39

Nashpy Documentation, Release 0.0.40

4. Solve

•
∑︀𝑚

𝑖=1 𝜎𝑟𝑖 = 1 and 𝜎𝑟𝑖 ≥ 0 for all 𝑖

•
∑︀𝑛

𝑗=1 𝜎𝑐𝑖 = 1 and 𝜎𝑐𝑗 ≥ 0 for all 𝑗

5. Check the best response condition.

Repeat steps 3,4 and 5 for all potential support pairs.

Question

Use support enumeration to find all Nash equilibria for the game given by 𝐴 =

(︂
1 1 −1
2 −1 0

)︂
and 𝐵 =(︂

1/2 −1 −1/2
−1 3 2

)︂
.

Answer

1. It is immediate to note that there are no pairs of pure best responses.

2. All possible support pairs are:

• 𝐼 = {1, 2} and 𝐽 = {1, 2}

• 𝐼 = {1, 2} and 𝐽 = {1, 3}

• 𝐼 = {1, 2} and 𝐽 = {2, 3}

3. Let us solve the corresponding linear equations:

• 𝐼 = {1, 2} and 𝐽 = {1, 2}:

1/2𝜎𝑟1 − 𝜎𝑟2 = −𝜎𝑟1 + 3𝜎𝑟2

𝜎𝑟1 = 8/3𝜎𝑟2

𝜎𝑐1 + 𝜎𝑐2 = 2𝜎𝑐1 − 𝜎𝑐2

𝜎𝑐1 = 2𝜎𝑐2

• 𝐼 = {1, 2} and 𝐽 = {1, 3}:

1/2𝜎𝑟1 − 𝜎𝑟2 = −1/2𝜎𝑟1 + 2𝜎𝑟2

𝜎𝑟1 = 3𝜎𝑟2

𝜎𝑐1 − 𝜎𝑐3 = 2𝜎𝑐1 + 0𝜎𝑐3

𝜎𝑐1 = −𝜎𝑐3

• 𝐼 = {1, 2} and 𝐽 = {2, 3}:

−𝜎𝑟1 + 3𝜎𝑟2 = −1/2𝜎𝑟1 + 2𝜎𝑟2

𝜎𝑟1 = 2𝜎𝑟2

𝜎𝑐2 − 𝜎𝑐3 = −𝜎𝑐2 + 0𝜎𝑐3

2𝜎𝑐2 = 𝜎𝑐3

40 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

4. We check which supports give valid strategies:

• 𝐼 = {1, 2} and 𝐽 = {1, 2}:

𝜎𝑟 = (8/11, 3/11)

𝜎𝑐 = (2/3, 1/3, 0)

• 𝐼 = {1, 2} and 𝐽 = {1, 3}:

𝜎𝑟 = (3/4, 1/4)

𝜎𝑐 = (𝑘, 0,−𝑘)

which is not a valid strategy.

• 𝐼 = {1, 2} and 𝐽 = {2, 3}:

𝜎𝑟 = (2/3, 1/3)

𝜎𝑐 = (0, 1/3, 2/3)

5. Let us verify the best response condition:

• 𝐼 = {1, 2} and 𝐽 = {1, 2}:

𝜎𝑐 = (2/3, 1/3, 0)

𝐴𝜎𝑇
𝑐 =

(︂
1
1

)︂
Thus 𝜎𝑟 is a best response to 𝜎𝑐

𝜎𝑟 = (8/11, 3/11)

𝜎𝑟𝐵 = (1/11, 1/11, 2/11)

Thus 𝜎𝑐 is not a best response to 𝜎𝑟 (because there is a better response outside of the support of 𝜎𝑐).

• 𝐼 = {1, 2} and 𝐽 = {2, 3}:

𝜎𝑐 = (0, 1/3, 2/3)

𝐴𝜎𝑇
𝑐 =

(︂
−1/3
−1/3

)︂
Thus 𝜎𝑟 is a best response to 𝜎𝑐

𝜎𝑟 = (2/3, 1/3)

𝜎𝑟𝐵 = (0, 1/3, 1/3)

Thus 𝜎𝑐 is a best response to 𝜎𝑟.

Thus the (unique) Nash equilibrium for this game is:

((2/3, 1/3), (0, 1/3, 2/3))

3.5. Support enumeration 41

Nashpy Documentation, Release 0.0.40

3.5.3 Using Nashpy

See Solve with support enumeration for guidance of how to use Nashpy to use support enumeration.

3.6 Vertex enumeration

The vertex enumeration algorithm implemented in Nashpy is based on the one described in [Nisan2007].

The algorithm is as follows:

For a nondegenerate 2 player game (𝐴,𝐵) ∈ R𝑚×𝑛2 the following algorithm returns all nash equilibria:

1. Obtain the best response Polytopes 𝑃 and 𝑄.

2. For all pairs of vertices of 𝑃 and 𝑄.

3. Check if the pair is fully labeled and return the normalised probability vectors.

Repeat steps 2 and 3 for all pairs of vertices.

3.6.1 Discussion

1. Before creating the best response Polytope we need to consider the best response Polyhedron. For the row player,
this corresponds to the set of all the mixed strategies available to the row player as well as an upper bound on the
utilities to the column player. Analogously for the column player:

𝑃 = {(𝑥, 𝑣) ∈ R𝑚 × R | 𝑥 ≥ 0,⊮𝑥 = 1, 𝐵𝑇𝑥 ≤ ⊮𝑣}
�̄� = {(𝑦, 𝑢) ∈ R𝑛 × R | 𝑦 ≥ 0,⊮𝑦 = 1, 𝐴𝑦 ≤ ⊮𝑢}

Note that in both definitions above we have a total of 𝑚+ 𝑛 inequalities in the constraints.

For 𝑃 , the first 𝑚 of those constraints correspond to the elements of 𝑥 being greater or equal to 0. For a given 𝑥,
if 𝑥𝑖 = 0, we say that 𝑥 has label :math`i`. This corresponds to strategy 𝑖 not being in the support of 𝑥.

For the last 𝑛 of these inequalities, when they are equalities they correspond to whether or not strategy 1 ≤ 𝑗 ≤ 𝑛
of the other player is a best response to 𝑥. Similarly, if strategy 𝑗 is a best response to 𝑥 then we say that 𝑥 has
label 𝑚+ 𝑗.

This all holds analogously for the column player. If the labels of a pair of elements of 𝑃 and �̄� give the full set
of integers from 1 to 𝑚+𝑛 then they represent strategies that are best responses to each other. Since, this would
imply that either a pure stragey is not played or it is a best response to the other players strategy.

The difficulty with using the best response Polyhedron is that the upper bound on the utilities of both players
(𝑢, 𝑣) is not known. Importantly, we do not need to know it. Thus, we assume that in both cases: 𝑢 = 𝑣 = 1
(this corresponds to a scaling of our strategy vectors).

This allows us to define the best response Polytopes:

𝑃 = {(𝑥, 𝑣) ∈ R𝑚 × R | 𝑥 ≥ 0, 𝐵𝑇𝑥 ≤ 1}
𝑄 = {(𝑦, 𝑢) ∈ R𝑛 × R | 𝑦 ≥ 0, 𝐴𝑦 ≤ 1}

2. Step 2: The vertices of these polytopes are the points that will have labels (they are the points that are at the
intersection of the underlying halfspaces [Ziegler2012]).

To find these vertices, nashpy uses scipy which has a handy class for creating Polytopes using the inequality
definitions and being able to return the vertices. Here is the wrapper written in nashpy that is used by the vertex
enumeration algorithm to give the vertices and corresponding labels:

42 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 3]])
>>> halfspaces = nash.polytope.build_halfspaces(A)
>>> vertices = nash.polytope.non_trivial_vertices(halfspaces)
>>> for vertex in vertices:
... print(vertex)
(array([0.333..., 0...]), {0, 3})
(array([0..., 0.333...]), {1, 2})
(array([0.25, 0.25]), {0, 1})

3. Step 3, we iterate over all pairs of the vertices of both polytopes and pick out the ones that are fully labeled.
Because of the scaling that took place to create the Polytope from the Polyhedron, we will need to return a
normalisation of both vertices.

3.7 Extensive Form Games

3.7.1 Motivating example: A modification of the Coordination Game

Consider the Coordination game with the modification that Alice and Bob have more information available to them:
Alice decides where they are going and then lets Bob know before Bob makes their own choice.

This can be represented pictorially as follows:

3.7. Extensive Form Games 43

Nashpy Documentation, Release 0.0.40

3.7.2 Definition of an Extensive Form Game

An extensive form game consists of:

• A finite set of players 𝒩 .

• A tree: 𝐺 = (𝑉,𝐸, 𝑥0) where: 𝑉 is the set of vertices, 𝐸 the set of edges and 𝑥0 ∈ 𝑉 is the root of the tree.

• (𝑉𝑖)𝑖∈𝒩 is a partition of the set of vertices that are not leaves.

• 𝑂 is the set of possible game outcomes.

• 𝑢 is a function mapping every leaf of 𝐺 to an element of 𝑂.

Question

For the modified coordination game:

1. What is the finite set of players 𝒩 ?

2. What the elements 𝐺 = (𝑉,𝐸, 𝑥0)?

3. What is the partition (𝑉𝑖)𝑖∈𝒩 ?

4. What is the set of possible game outcomes 𝑂?

5. What is the mapping 𝑢 from every leaf of 𝐺 to an element of 𝑂?

Answer

1. The set 𝒩 has two players: Alice and Bob.

2. The tree is given by:

𝑉 = {𝐴,𝐵1, 𝐵2, 𝑂1, 𝑂2, 𝑂3, 𝑂4}

𝐸 = {(𝐴,𝐵1), (𝐴,𝐵2), (𝐵1, 𝑂1), (𝐵1, 𝑂2), (𝐵2, 𝑂3), (𝐵2, 𝑂4)}

𝑥0 = 𝐴

3. The partition of of non leaf vertices is given by:

𝑉Alice = {𝐴1} 𝑉Bob = {𝐵1, 𝐵2}

4. The set of possible game ouctomes 𝑂 = {(3, 2), (1, 1), (0, 0), (2, 3)}.

5. The mapping 𝑢 is given by:

𝑢(𝑂1) = (3, 2) 𝑢(𝑂2) = (1, 1) 𝑢(𝑂3) = (0, 0) 𝑢(𝑂4) = (2, 3)

44 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

3.7.3 Imperfect information

The modified coordination game described here differs from the example given in the normal for game chapter in that
Bob knows what action is chosen by Alice.

To represent imperfect information we can partition the vertices of a game tree to indicate which vertices have the same
information.

This can be represented pictorially as follows:

This indicates that Bob makes a decision at both nodes in {𝐵1, 𝐵2} without knowing at which of the two vertices they
are. The set {𝐵1, 𝐵2} is called an information set.

3.7.4 Definition of an information set

Given a game in extensive form: (𝒩 , 𝐺, (𝑉𝑖)𝑖∈𝒩 , 𝑂, 𝑢) the set of information sets 𝑣𝑖 of player 𝑖 ∈ 𝒩 is a partition of
𝑉𝑖. Each element of 𝑣𝑖 denotes a set of nodes at which a player is unable to distinguish when choosing an action.

This implies that:

• Every information set contains vertices for a single player.

• All vertices in an information set must have the same number of successors (with the same action labels).

Question

For the following games with 𝒩 = {Alice,Bob}, assume that decision nodes 𝐴𝑖 are Alice’s and 𝐵𝑖 are Bob’s. Obtain
all information sets:

3.7. Extensive Form Games 45

Nashpy Documentation, Release 0.0.40

1.

2.

46 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

3.

3.7. Extensive Form Games 47

Nashpy Documentation, Release 0.0.40

4.

48 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

5.

Answer

1. 𝑣Alice = {{𝐴}} 𝑣Bob = {{𝐵1}, {𝐵2}}

2. 𝑣Alice = {{𝐴}} 𝑣Bob = {{𝐵1, 𝐵2}}

3. 𝑣Alice = {{𝐴1}, {𝐴2}} 𝑣Bob = {{𝐵1}, {𝐵2}}

4. 𝑣Alice = {{𝐴1}, {𝐴2}} 𝑣Bob = {{𝐵1, 𝐵2}}

5. This game has incoherent information sets: the two vertices 𝐵1 and 𝐵2 have different actions.

3.7. Extensive Form Games 49

Nashpy Documentation, Release 0.0.40

3.7.5 Definition of a strategy in an extensive form game

A strategy for a player in an extensive form is a collection of probability distribution over the action set of each infor-
mation set.

3.7.6 Equivalence of Extensive and Normal Form Games

A game in extensive form can be mapped to a game in normal form by enumerating all possible strategies that indicate
single actions at each information set. This set of possible strategies corresponds to the actions in the normal form
game.

These strategies can be thought of as vectors in the space of the cross product of the sets of actions available at every
information set. For player 𝑖 ∈ 𝒩 with information sets 𝑣𝑖 = ((𝑣𝑖)1, (𝑣𝑖)2, . . . , (𝑣𝑖)𝑛) a strategy 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛)
indicates what action to take at each information set. So 𝑠2 will prescribe which action to take at all vertices contained
in (𝑣𝑖)2.

As an example consider the modified coordination game. The full enumeration of strategies that indicate single actions
for Alice is:

𝒜1 = {(Sports), (Comedy)}

The full enumeration of strategies that indicate single actions for Bob is:

𝒜2 = {(Sports,Sports), (Sports,Comedy), (Comedy,Sports), (Comedy,Comedy)}

So (Sports,Comedy) indicates to choose Sports at 𝐵1 and Comedy at 𝐵2.

Using this enumeration the payoff functions can be given by the matrices 𝐴,𝐵:

𝐴 =

(︂
3 3 1 1
0 2 0 2

)︂

𝐵 =

(︂
2 2 1 1
0 3 0 3

)︂

Question

Obtain the Normal Form Game representation corresponding to

50 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Answer

The full enumeration of strategies that indicate single actions for Alice is:

𝒜1 = {(Sports), (Comedy)}

The full enumeration of strategies that indicate single actions for Bob is:

𝒜2 = {(Sports), (Comedy)}

This is because there is a single information set for Bob.

Using this enumeration the payoff functions can be given by the matrices 𝐴,𝐵:

𝐴 =

(︂
3 1
0 2

)︂

𝐵 =

(︂
2 1
0 3

)︂

3.7.7 Using Nashpy

See Solve with support enumeration for guidance of how to use Nashpy to use support enumeration to find Nash
equilibria once a Normal Form game representation has been obtained.

3.7. Extensive Form Games 51

Nashpy Documentation, Release 0.0.40

3.8 Repeated Games

3.8.1 Motivating example: Repeated Coordination Game

Consider the Coordination game but in this instance Alice and Bob repeat their play of this game. In other words, they
aim to meet (both making their decision at the same time) and after this first meeting they repeat the process, with full
knowledge of the outcome of the first play.

This can be represented pictorially as follows:

To show this as an equivalent extensive form game, the tree is the same but we take care to label the vertices correctly:

3.8.2 Definition of a repeated games

Given a two player game (𝐴,𝐵) ∈ R𝑚×𝑛2 , referred to as a stage game, a 𝑇 -stage repeated game is a game in which
players play that stage game for 𝑇 > 0 repetitions. Players make decisions based on the full history of play over all the
repetitions.

Question

For the following values of 𝑇 and the following stage games, how many leaves would the extensive form representation
of the repeated game have:

1.

𝐴 =

(︂
1 2
2 3

)︂
𝐵 =

(︂
2 3
1 −1

)︂
𝑇 = 2

2.

𝐴 =

(︂
0 1
−1 3

)︂
𝐵 = −𝐴 𝑇 = 2

52 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

3.

𝐴 =

(︂
0 1
−1 3

)︂
𝐵 = −𝐴 𝑇 = 3

4.

𝐴 =

(︂
0 1 4
1 −1 3

)︂
𝐵 = −𝐴 𝑇 = 2

Answer

1. The initial play of the game will have 4 leaves (corresponding to the 2 choices by each player), each leave will
in turn have 4 leaves. Thus, the total number of leaves will be 16.

2. The initial play of the game will have 4 leaves (corresponding to the 2 choices by each player), each leave will
in turn have 4 leaves. Thus, the total number of leaves will be 16.

3. The initial play of the game will have 4 leaves (corresponding to the 2 choices by each player), each leave will in
turn have 4 leaves in the second repetition. In the final repetition each of those leaves will have 4 leaves. Thus,
the total number of leaves will be 64.

4. The initial play of the game will have 6 leaves (corresponding to the 2 choices by the row player and 3 by the
column player), each leave will in turn have 6 leaves in the second repetition. Thus, the total number of leaves
will be 36.

3.8.3 Strategies in a repeated game

A strategy for a player in a repeated game is a mapping from all possible histories of play to a probability distribution
over the action set of the stage game.

Question

For the repeated coordination game which of the following are valid strategies, and in the case of valid strategies what
is the outcome.

1. For the row player:

(∅, ∅) → 𝐶 (3.51)
(𝑆, 𝑆) → 𝐶(3.52)
(𝑆,𝐶) → 𝐶(3.53)
(𝐶, 𝑆) → 𝑆(3.54)
(𝐶,𝐶) → 𝑆(3.55)
(3.56)

For the column player:

(∅, ∅) → 𝑆 (3.57)
(𝑆, 𝑆) → 𝐶(3.58)
(𝑆,𝐶) → 𝐶(3.59)
(𝐶, 𝑆) → 𝑆(3.60)
(𝐶,𝐶) → 𝑆(3.61)
(3.62)

3.8. Repeated Games 53

Nashpy Documentation, Release 0.0.40

2. For the row player:

(∅, ∅) → 𝐶 (3.63)
(𝑆, 𝑆) → 𝐶(3.64)
(𝐶, 𝑆) → 𝑆(3.65)
(𝐶,𝐶) → 𝑆(3.66)
(3.67)

For the column player:

(∅, ∅) → 𝑆 (3.68)
(𝑆, 𝑆) → 𝐶(3.69)
(𝑆,𝐶) → 𝐶(3.70)
(𝐶, 𝑆) → 𝑆(3.71)
(𝐶,𝐶) → 𝑆(3.72)
(3.73)

3. For the row player:

(∅, ∅) → 𝐶 (3.74)
(𝑆, 𝑆) → 𝐶(3.75)
(𝐶, 𝑆) → 𝑆(3.76)
(𝑆,𝐶) → 𝑆(3.77)
(𝐶,𝐶) → 𝑆(3.78)
(3.79)

For the column player:

(∅, ∅) → 𝑆 (3.80)
(𝑆, 𝑆) → 𝐶(3.81)
(𝑆,𝐶) → 𝐶(3.82)
(𝐶, 𝑆) → 𝛼(3.83)
(𝐶,𝐶) → 𝑆(3.84)
(3.85)

4. For the row player:

(∅, ∅) → 𝑆 (3.86)
(𝑆, 𝑆) → 𝐶(3.87)
(𝐶, 𝑆) → 𝑆(3.88)
(𝑆,𝐶) → 𝐶(3.89)
(𝐶,𝐶) → 𝑆(3.90)
(3.91)

For the column player:

(∅, ∅) → 𝑆 (3.92)
(𝑆, 𝑆) → 𝐶(3.93)
(𝑆,𝐶) → 𝐶(3.94)
(𝐶, 𝑆) → 𝑆(3.95)
(𝐶,𝐶) → 𝑆(3.96)
(3.97)

54 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Answer

1. This is a valid strategy pair: all possible histories are mapped to correct actions. The outcome would be: (3, 2)
(corresponding to 𝑂9 of the extensive form representation).

2. This is not a valid strategy pair: the row player strategy does not have a mapping from (𝑆,𝐶).

3. This is not a valid strategy pair: the column player strategy maps from (𝐶, 𝑆) to an action (𝛼) that is not in the
action space of the stage game.

4. This is a valid strategy pair: all possible histories are mapped to correct actions. The outcome would be: (5, 5)
(corresponding to 𝑂4 of the extensive form representation).

3.8.4 Equilibria in repeated games

In a repeated game it is possible for players to encode reputation and trust in their strategies.

Consider as an example the following stage game with 𝑇 = 2:

𝐴 =

(︂
0 6 1
1 7 5

)︂
𝐵 =

(︂
0 3 1
1 0 1

)︂
Through inspection it is possible to verify that the following strategy pair is a Nash equilibrium:

For the row player:

(∅, ∅) → 𝑟1 (3.98)
(𝑟1, 𝑐1) → 𝑟2(3.99)
(𝑟1, 𝑐2) → 𝑟2(3.100)
(𝑟1, 𝑐3) → 𝑟2(3.101)
(𝑟2, 𝑐1) → 𝑟2(3.102)
(𝑟2, 𝑐2) → 𝑟2(3.103)
(𝑟2, 𝑐3) → 𝑟2(3.104)
(3.105)

For the column player:

(∅, ∅) → 𝑐2 (3.106)
(𝑟1, 𝑐1) → 𝑐3(3.107)
(𝑟2, 𝑐1) → 𝑐1(3.108)
(𝑟1, 𝑐2) → 𝑐3(3.109)
(𝑟2, 𝑐2) → 𝑐1(3.110)
(𝑟1, 𝑐3) → 𝑐3(3.111)
(𝑟2, 𝑐3) → 𝑐1(3.112)
(3.113)

This pair of strategies correspond to the following scenario:

The row player plays 𝑟1 and the column player plays 𝑐2 in the first state. The row player plays 𝑟2 and the column player
plays 𝑐3 in the second stage.

Note that if the row player deviates and plays 𝑟2 in the first stage then the column player will play 𝑐1.

3.8. Repeated Games 55

Nashpy Documentation, Release 0.0.40

If both players play these strategies their utilities are: (11, 4) which is better for both players then the utilities at any
sequence of pure stage Nash equilibria. But is this a Nash equilibrium? To find out we investigate if either player has
an incentive to deviate.

1. If the row player deviates, they would only be rational to do so in the first stage, if they did they would gain 1 in
that stage but lose 4 in the second stage. Thus they have no incentive to deviate.

2. If the column player deviates, they would only do so in the first stage and gain no utility.

Thus this strategy pair is a Nash equilibrium and evidences how a reputation can be built and cooperation can emerge
from complex dynamics.

3.8.5 Using Nashpy

Repeated games are a particularly compact way of representing a given subset of Extensive Form Games. Thus, it is
possible to study them as an equivalent normal form game. See Obtain a repeated game for guidance of how to use
Nashpy to generate a normal form game by repeating a stage game.

3.9 The Emergence of Cooperation

3.9.1 Motivating example: can cooperation emerge in a short time frame?

The repeated Prisoners Dilemma is a model of direct reciprocity.

𝐴 =

(︂
3 0
5 1

)︂
1. The first action corresponds to acting in the interest of all individuals (this is often referred to as Cooperate).

2. The second action corresponds to acting in ones own self interest (this is often referred to as Defect).

In a population of individuals, is it possible for self interest to not become the norm?

To answer this question we can consider the Iterated Prisoners Dilemma as a repeated game where individuals have
two consecutive interactions. The incentive to initially acting selflessly is that the other individual will do the same in
the second interaction.

Recalling Strategies in a repeated game the strategies in this case must map histories of play to actions. The possible
histories of play are:

ℋ = {(∅, ∅), (𝑟1, 𝑐1), (𝑟1, 𝑐2), (𝑟2, 𝑐1), (𝑟2, 𝑐2)}

Row strategies are thus of the form:

Cooperate unconditionally:

(∅, ∅) → 𝑟1 (3.114)
(𝑟1, 𝑐1) → 𝑟1(3.115)
(𝑟1, 𝑐2) → 𝑟1(3.116)
(𝑟2, 𝑐1) → 𝑟1(3.117)
(𝑟2, 𝑐2) → 𝑟1(3.118)
(3.119)

56 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Defect unconditionally:

(∅, ∅) → 𝑟2 (3.120)
(𝑟1, 𝑐1) → 𝑟2(3.121)
(𝑟1, 𝑐2) → 𝑟2(3.122)
(𝑟2, 𝑐1) → 𝑟2(3.123)
(𝑟2, 𝑐2) → 𝑟2(3.124)
(3.125)

Start by cooperating and then repeat the action of the opponent:

(∅, ∅) → 𝑟1 (3.126)
(𝑟1, 𝑐1) → 𝑟1(3.127)
(𝑟1, 𝑐2) → 𝑟2(3.128)
(𝑟2, 𝑐1) → 𝑟1(3.129)
(𝑟2, 𝑐2) → 𝑟2(3.130)
(3.131)

The strategy space when repeating the game twice corresponds to 32 different strategies. We can see how these 32
strategies interact in an evolutionary setting using replicator dynamics.

0 100 200 300 400 500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

Evolution of IPD strategies
17
19
21
23
25
27
29
31

0 100 200 300 400 500
Time

0

1

2

3

4

5
Average per turn utility

The legend shows the index in the strategy space of the strategies that have a final proportion larger than 10−2. The
average utility plot gives us the answer to our question: the average per turn utility is 1 which implies that the strategies
that survive the evolutionary process are the ones that act selfishly.

The immediate conclusion is somewhat disappointing: how can a society emerge in which individuals will do what is
best for the collective?

This question can be better answered by considering a much larger strategy space corresponding to more repetitions of
the prisoners dilemma.

3.9. The Emergence of Cooperation 57

Nashpy Documentation, Release 0.0.40

3.9.2 The General form of the Prisoners Dilemma

The general form is:

𝐴 =

(︂
𝑅 𝑆
𝑇 𝑃

)︂
𝐵 =

(︂
𝑅 𝑇
𝑆 𝑃

)︂
with the following constraints:

𝑇 > 𝑅 > 𝑃 > 𝑆 2𝑅 > 𝑇 + 𝑆

• The first constraint ensures that the second action “Defect” dominates the first action “Cooperate”.

• The second constraint ensures that a social dilemma arises: the sum of the utilities to both players is best when
they both cooperate.

This game is a good model of agent (human, etc) interaction: a player can choose to take a slight loss of utility for the
benefit of the other play and themselves.

Question

Under what conditions is the following game a Prisoners Dilemma:

𝐴 =

(︂
1 −𝜇

1 + 𝜇 0

)︂
𝐵 = 𝐴𝑇

Answer

This is a Prisoners Dilemma when:

1 + 𝜇 > 1 and 0 > −𝜇

and:

2 > 1

Both of these equations hold for 𝜇 > 0. This is a convenient form for the Prisoners Dilemma as it corresponds to a 1
dimensional parametrization.

As a single one shot game there is not much more to say about the Prisoner’s dilemma. It becomes fascinating when
studied as a repeated game.

3.9.3 Axelrod’s tournaments

In 1980, Robert Axelrod (a political scientist) invited submissions to a computer tournament version of an iterated
prisoners dilemma. This was described in a 1980 paper [Axelrod1980].

• 14 strategies were submitted.

• Round robin tournament with 200 stages including a 15th player who played uniformly randomly.

• Some complicated strategies, including for example a strategy that used a 𝜒2 test to try and identify strategies that
were acting randomly. You can read more about this tournament here: http://axelrod.readthedocs.io/en/stable/
reference/overview_of_strategies.html#axelrod-s-first-tournament

58 Chapter 3. Nashpy Game Theory Text book

http://axelrod.readthedocs.io/en/stable/reference/overview_of_strategies.html#axelrod-s-first-tournament
http://axelrod.readthedocs.io/en/stable/reference/overview_of_strategies.html#axelrod-s-first-tournament

Nashpy Documentation, Release 0.0.40

• The winner (average score) was in fact a straightforward strategy: Tit For Tat. This strategy starts by cooperating
and then repeats the opponents previous move.

The 15 by 15 payoff matrix (rounded to 1 digit) that corresponds to this tournament is:⎛⎜⎜⎝

3. 3. 3. 3. 3. 3. 3. 3. 2.6 3.
1.4 1.1 1.5 2.2 2.2
3. 3. 3. 3. 3. 3. 3. 3. 3. 1.2
1.3 1.1 1.3 2.8 2.8
3. 3. 3. 3. 3. 3. 3. 3. 2.8 0.1
2.2 2.7 2.7 1.6 1.5
3. 3. 3. 3. 3. 3. 3. 3. 3.1 0.5
2.1 2.4 2.4 2. 2.1
3. 3. 3. 3. 3. 3. 3. 3. 3.3 1.3
1.3 1.3 1.4 2.8 2.6
3. 3. 3. 3. 3. 3. 3. 3. 2.6 2.5
1.4 1.2 1.7 2.9 2.9
3. 3. 3. 3. 3. 3. 3. 3. 2. 1.1
1.2 1.1 1.3 3. 3.
3. 3. 3. 3. 3. 3. 3. 3. 2. 1.
1.3 1.1 1.2 3. 2.9
2.6 2.8 3.2 2.7 1.8 2.6 1.4 1.4 1.5 3.1
1.5 1.4 2.1 2.7 2.9
3. 1. 4.9 3.3 1.4 1.1 1. 1.2 2.7 1.
2.2 2.6 1.2 2.7 2.6
1.4 1.3 3.5 2.8 1.5 1.4 1.2 1.3 1.7 3.5
1.3 1.1 1.3 2.4 2.4
1.2 1.1 3.2 2.8 1.4 1.2 1.1 1.1 1.5 3.2
1.2 1.2 1.3 2.3 2.3
1.5 1.3 3.2 2.8 1.6 1.7 1.2 1.1 2.4 1.
1.3 1.2 1.4 2.3 2.4
2.2 0.9 3.9 2.8 1.1 0.8 0.6 0.6 1.2 1.2
1.8 2.1 2. 2.3 2.3
2.3 0.9 3.9 2.7 1.2 0.7 0.5 0.7 1. 1.2
1.8 2.1 2. 2.3 2.3

⎞⎟⎟⎠
We see that the first 8 strategies all cooperate with each other (getting a utility of 3).

These 15 strategies are a small subset of the strategy space for the iterated prisoners dilemma with 𝑇 = 200 repetitions.
As before, we can see how these 15 strategies interact in an evolutionary setting using replicator dynamics.

It is evident here that cooperation emerges from this strategy space.

The fact that Tit For Tat won garnered a lot of research (still ongoing) as it showed a mathematical model of how
cooperative behaviour can emerge in complex situations. However, recent research has shown that Tit For Tat is not a
universally strong strategy [Knight2018], [Harper2017], [Press2012].

3.9. The Emergence of Cooperation 59

Nashpy Documentation, Release 0.0.40

0 100 200 300 400 500
Time

0.0

0.2

0.4

0.6

0.8

1.0
Po

pu
la

tio
n

pr
op

or
tio

n
Evolution of strategies in Axelrod's 1st tournament

0
1
2
3
4
5
6
7

0 100 200 300 400 500
Time

0

1

2

3

4

5
Average per turn utility

3.9.4 Using Python

There is a Python library (axelrod) with over 200 strategies that can be used to reproduce this work [Knight2016].
You can read the documentation for it here: http://axelrod.readthedocs.io.

3.10 The Lemke Howson Algorithm

The Lemke Howson algorithm implemented in Nashpy is based on the one described in [Nisan2007] originally intro-
duced in [Lemke1964].

The algorithm is as follows:

For a nondegenerate 2 player game (𝐴,𝐵) ∈ R𝑚×𝑛2 the following algorithm returns a single Nash equilibria:

1. Obtain the best response Polytopes 𝑃 and 𝑄.

2. Choose a starting label to drop, this will correspond to a vertex of 𝑃 or 𝑄.

3. In that polytope, remove the label from the corresponding vertex and move to the vertex that shared that label.
A new label will be picked up and duplicated in the other polytope.

4. In the other polytope drop the duplicate label and move to the vertex that shared that label.

Repeat steps 3 and 4 until there are no duplicate labels.

3.10.1 Discussion

This algorithm is implemented using integer pivoting.

1. Step 1, the best response polytopes 𝑃 and 𝑄 are represented by a tableau. For example for:

𝐴 =

(︂
3 1
1 3

)︂

𝐵 =

(︂
1 3
2 1

)︂
This is represented as a pair of tableau:

𝑇𝑐 =

(︂
3 1 1 0 1
1 3 0 1 1

)︂

60 Chapter 3. Nashpy Game Theory Text book

http://axelrod.readthedocs.io

Nashpy Documentation, Release 0.0.40

For reasons that will become clear, we infact shift this tableau so that the labelling is coherent across both poly-
topes:

𝑇𝑐 =

(︂
1 0 3 1 1
0 1 1 3 1

)︂
Here it is as a numpy array:

>>> import numpy as np
>>> col_tableau = np.array([[1, 0, 3, 1, 1],
... [0, 1, 1, 3, 1]])

Here is the tableau that corresponds to 𝐵:

𝑇𝑟 =

(︂
1 2 1 0 1
3 1 0 1 1

)︂
Here it is as a numpy array:

>>> row_tableau = np.array([[1, 2, 1, 0, 1],
... [3, 1, 0, 1, 1]])

2. Step 2, choosing a starting label is choosing an integer from 0 ≤ 𝑘 < 𝑚 + 𝑛 (we start our indices at 0). As an
example, let us choose the label 1.

First we need to identify which vertex has that label. The labels of a tableau correspond to the non basic variables:
these are the columns with more than a single non zero variable:

• The labels of 𝑇𝑐 are thus {2, 3}:

>>> from nashpy.linalg.tableau import Tableau
>>> ctableau = Tableau(col_tableau)
>>> ctableau.non_basic_variables
{2, 3}

• The labels of 𝑇𝑟 are thus {0, 1}:

>>> rtableau = Tableau(row_tableau)
>>> rtableau.non_basic_variables
{0, 1}

So we are going to drop label 1 from 𝑇𝑟.

3. Step 3, removing a label and moving from one vertex to another corresponds to integer pivoting [Dantzig2016].
This is a manipulation of 𝑇 , dropping label 1 corresponds to pivoting the second column.

To do this we need to identify which row will not change (the “pivot row”), this is done by finding the smallest
ratio of value in that column over the value in the last column: (𝑇𝑟)𝑖4/(𝑇𝑟)𝑖𝑘.

In our case the first row has corresponding ratio: 1/2 and the second ratio 1/1. So our pivot row is the first row:

>>> rtableau._find_pivot_row(column_index=1)
0

What we now do is row operations so as to make the second column correspond to a basic variable. We will do
this by multiplying the second row by 2 and then subtracting the first row by it:

𝑇𝑟 =

(︂
1 2 1 0 1
5 0 −1 2 1

)︂
Our resulting tableau has labels: {0, 2} so it has “picked up” label 2:

3.10. The Lemke Howson Algorithm 61

Nashpy Documentation, Release 0.0.40

>>> rtableau.pivot_and_drop_label(column_index=1)
2
>>> rtableau._tableau
array([[1, 2, 1, 0, 1],

[5, 0, -1, 2, 1]])

4. Step 4, we will now repeat the previous manipulation on 𝑇𝑐 where we now need to drop the duplicate label 2.
We do this by pivoting the third column.

The ratios are: 1/3 for the first row and 1/1 for the second, thus the pivot row is the first row:

>>> ctableau._find_pivot_row(column_index=2)
0

Using similar row operations we obtain:

𝑇𝑐 =

(︂
1 0 3 1 1
−1 3 0 8 2

)︂
Our resulting tableau has labels: {0, 3}, so it has picked up label 0:

>>> ctableau.pivot_and_drop_label(column_index=2)
0
>>> ctableau._tableau
array([[1, 0, 3, 1, 1],

[-1, 3, 0, 8, 2]])

We now need to drop 0 from 𝑇𝑟, we do this by pivoting the first column. The ratio test: 1/1 > 1/5 implies that
the second row is the pivot row. Using similar algebraic manipulations we obtain:

𝑇𝑟 =

(︂
0 10 6 −2 4
5 0 −1 2 1

)︂
Our resulting tableau has labels: {2, 3}, so it has picked up label 3:

>>> rtableau.pivot_and_drop_label(column_index=0)
3
>>> rtableau._tableau
array([[0, 10, 6, -2, 4],

[5, 0, -1, 2, 1]])

We now need to drop 3 from 𝑇𝑐, we do this by pivoting the fourth column. The ratio test: 1/1 > 2/8 indicates
that we pivot on the second row which gives:

𝑇𝑐 =

(︂
9 −1 24 0 6
−1 3 0 8 2

)︂
Our resulting tableau has labels: {0, 1}:

>>> ctableau.pivot_and_drop_label(column_index=3)
1
>>> ctableau._tableau
array([[9, -3, 24, 0, 6],

[-1, 3, 0, 8, 2]])

62 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

The union of the labels of 𝑇𝑟 and 𝑇𝑐 is: {0, 1, 2, 3} which implies that we have a fully labeled vertx pair.

The vertex corresponding to 𝑇𝑟 are obtained by setting the non basic variables to 0 and looking at the corre-
sponding values of the first two columns:

𝑣𝑟 = (1/5, 4/10) = (1/5, 2/5)

The vertex corresponding to 𝑇𝑐 are obtained from the last 2 columns:

𝑣𝑐 = (6/24, 2/8) = (1/4, 1/4)

The final step of the algorithm is to return the normalised probabilities that correspond to these vertices:

((1/3, 2/3), (1/2, 1/2))

3.11 Degenerate games

A two player game is called nondegenerate if no mixed strategy of support size 𝑘 has more than 𝑘 pure best responses.

For example, the zero sum game defined by the following matrix is degenerate:

𝐴 =

⎛⎝ 0 −1 1
−1 0 1
−1 1 0

⎞⎠
The third column has two pure best responses.

When dealing with degenerate games unexpected results can occur:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [-1, 0, 1], [-1, 0, 1]])
>>> game = nash.Game(A)

Here is the output when using Support enumeration:

>>> for eq in game.support_enumeration():
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.5 0.5 0.] [0.5 0.5 0.]
[0.5 0. 0.5] [0.5 0.5 0.]

Here is the output when using Vertex enumeration:

>>> for eq in game.vertex_enumeration():
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.5 0. 0.5] [0.5 0.5 -0.]
[0.5 0.5 -0.] [0.5 0.5 -0.]

Here is the output when using the The Lemke Howson Algorithm:

>>> for eq in game.lemke_howson_enumeration():
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.33... 0.33... 0.33...] [nan]

3.11. Degenerate games 63

Nashpy Documentation, Release 0.0.40

We see that the lemke-howson algorithm fails but also that the Support enumeration and Vertex enumeration fail to find
some equilibria: there is in fact a range of strategies the row player can play against [0.5 0.5 0] that is still a best
response.

The Support enumeration algorithm can be run with two optional arguments:

• non_degenerate=True (False is the default) will only consider supports of equal size. If you know your game
is non degenerate this will make support enumeration make less checks.

• tol=0 (10 ** -16 is the default), when considering the underlying linear system tol is considered to be a
lower bound for difference between two real numbers. Using tol=0 ensures a strict run of the algorithm.

Here is an example:

>>> A = np.array([[4, 9, 9], [9, 1, 6], [9, 2, 3]])
>>> B = np.array([[2, 2, 5], [7, 4, 4], [1, 6, 4]])
>>> game = nash.Game(A, B)
>>> for eq in game.support_enumeration():
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.5 0.5 0.] [0.38 0. 0.62]
[0.2 0.5 0.3] [0.57 0.32 0.11]
>>> for eq in game.support_enumeration(non_degenerate=True):
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.2 0.5 0.3] [0.57 0.32 0.11]
>>> for eq in game.support_enumeration(non_degenerate=False, tol=0):
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.2 0.5 0.3] [0.57 0.32 0.11]

3.12 Fictitious play

The fictitious play algorithm implemented in Nashpy is based on the one described in [Fudenberg1998].

The algorithm is as follows:

For a game (𝐴,𝐵) ∈ R𝑚×𝑛 define 𝜅𝑖
𝑡 : 𝑆

−1 → N to be a function that in a given time interval 𝑡 for a player 𝑖 maps a
strategy 𝑠 from the opponent’s strategy space 𝑆−1 to a number of total times the opponent has played 𝑠.

Thus:

𝜅𝑖
𝑡(𝑠

−𝑖) = 𝜅𝑡−1(𝑠
−𝑖) +

{︃
1, if 𝑠−𝑖

𝑡−1 = 𝑠−𝑖

0, otherwise

In practice:

𝜅1
𝑡 ∈ Z𝑛 𝜅2

𝑡 ∈ Z𝑚

At stage 𝑡, each player assumes their opponent is playing a mixed strategy based on 𝜅𝑡−1:

𝜅𝑡−1∑︀
𝜅𝑡−1

64 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

They calculate the expected value of each strategy, which is equivalent to:

𝑠1𝑡 ∈ argmax𝑠∈𝑆1
𝐴𝜅2

𝑡−1 𝑠2𝑡 ∈ argmax𝑠∈𝑆2
𝐵𝑇𝜅1

𝑡−1

In the case of multiple best responses, a random choice is made.

3.12.1 Discussion

Note that this algorithm will not always converge and sometimes it depends on the form of the game.

For example:

>>> import numpy as np
>>> import nashpy as nash
>>> A = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
>>> B = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> np.random.seed(0)
>>> play_counts = tuple(game.fictitious_play(iterations=iterations))
>>> play_counts[-1]
[array([5464., 1436., 3100.]), array([2111., 4550., 3339.])]

We can visualise the lack of convergence:

>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> probabilities = [row_play_counts / np.sum(row_play_counts) for row_play_counts, col_
→˓play_counts in play_counts]
>>> for number, strategy in enumerate(zip(*probabilities)):
... plt.plot(strategy, label=f"s_{number}")
>>> plt.xlabel("Iteration")
>>> plt.ylabel("Probability")
>>> plt.title("Actions taken by row player")
>>> plt.legend()

If we modify the game slightly we obtain a different outcome:

>>> A = np.array([[1 / 2, 1, 0], [0, 1 / 2, 1], [1, 0, 1 / 2]])
>>> B = np.array([[1 / 2, 0, 1], [1, 1 / 2, 0], [0, 1, 1 / 2]])
>>> game = nash.Game(A, B)
>>> np.random.seed(0)
>>> play_counts = tuple(game.fictitious_play(iterations=iterations))
>>> play_counts[-1]
[array([3290., 3320., 3390.]), array([3356., 3361., 3283.])]

With a clear convergence now visible:

>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> probabilities = [row_play_counts / np.sum(row_play_counts) for row_play_counts, col_
→˓play_counts in play_counts]
>>> for number, strategy in enumerate(zip(*probabilities)):

(continues on next page)

3.12. Fictitious play 65

Nashpy Documentation, Release 0.0.40

(continued from previous page)

... plt.plot(strategy, label=f"s_{number}")
>>> plt.xlabel("Iteration")
>>> plt.ylabel("Probability")
>>> plt.title("Actions taken by row player")
>>> plt.legend()

3.13 Stochastic fictitious play

The stochastic fictitious play algorithm implemented in Nashpy is based on the one given in [Hofbauer2002].

As explained in [Fudenberg1998] stochastic fictitious play “avoids the discontinuity inherent in standard fictitious play,
where a small change in the data can lead to an abrupt change in behaviour.”

The algorithm is designed to converge in cases where fictitious play does not converge. Note that in some cases this
will require a thoughtful choice of the etha and epsilon_bar parameters.

For a game (𝐴,𝐵) ∈ R𝑚×𝑛 define 𝜅𝑖
𝑡 : 𝑆

−1 → N to be a function that in a given time interval 𝑡 for a player 𝑖 maps a
strategy 𝑠 from the opponent’s strategy space 𝑆−1 to a number of total times the opponent has played 𝑠.

As per standard Fictitious play, each player assumes their opponent is playing a mixed strategy based on 𝜅𝑡−1. If no
play has taken place, then the probability of playing each action is assumed to be equal. The assumed mixed strategies
of a player’s opponent are multplied by the player’s own payoff matrices to calculate the expected payoff of each action.

A stochastic pertubation 𝜖𝑖 is added to each expected payoff 𝜋𝑖 to give a pertubated payoff. Each 𝜖𝑖 is independent of
each 𝜋𝑖 and is a random number between 0 and epsilon_bar.

A logit choice function is used to map the pertubated payoff to a non-negative probability distribution, corresponding
to the probability with which each strategy is chosen by the player. The logit choice function can be seen below:

𝐿𝑖(𝜋) =
exp(𝜂−1𝜋𝑖)∑︀
𝑗 exp(𝜂

−1𝜋𝑗)

3.13.1 Discussion

Using the same game from the fictitious play discussion section, we can visualise a lack of convergence when using
the default value of epsilon_bar:

>>> import numpy as np
>>> import nashpy as nash
>>> A = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
>>> B = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> np.random.seed(0)
>>> play_counts_and_distribuions = tuple(game.stochastic_fictitious_
→˓play(iterations=iterations))
>>> play_counts, distributions = play_counts_and_distribuions[-1]
>>> print(play_counts)
[array([3937., 1907., 4156.]), array([2823., 5458., 1719.])]

>>> import matplotlib.pyplot as plt
>>> plt.figure()

(continues on next page)

66 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

(continued from previous page)

>>> probabilities = [
... row_play_counts / np.sum(row_play_counts)
... if np.sum(row_play_counts) != 0
... else row_play_counts + 1 / len(row_play_counts)
... for (row_play_counts, col_play_counts), _ in play_counts_and_distribuions]
>>> for number, strategy in enumerate(zip(*probabilities)):
... plt.plot(strategy, label=f"s_{number}")
>>> plt.xlabel("Iteration")
>>> plt.ylabel("Probability")
>>> plt.title("Actions taken by row player")
>>> plt.legend()

Observe below that the game converges when passing values for etha and epsilon_bar:

>>> A = np.array([[1 / 2, 1, 0], [0, 1 / 2, 1], [1, 0, 1 / 2]])
>>> B = np.array([[1 / 2, 0, 1], [1, 1 / 2, 0], [0, 1, 1 / 2]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> etha = 0.1
>>> epsilon_bar = 10**-1
>>> np.random.seed(0)
>>> play_counts_and_distribuions = tuple(game.stochastic_fictitious_
→˓play(iterations=iterations, etha=etha, epsilon_bar=epsilon_bar))
>>> play_counts_and_distribuions[-1]
([array([3300., 3293., 3407.]), array([3320., 3372., 3308.])], [array([0.33502382, 0.
→˓41533594, 0.24964024]), array([0.18890743, 0.42793694, 0.38315563])])
>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> probabilities = [
... row_play_counts / np.sum(row_play_counts)
... if np.sum(row_play_counts) != 0
... else row_play_counts + 1 / len(row_play_counts)
... for (row_play_counts, col_play_counts), _ in play_counts_and_distribuions]
>>> for number, strategy in enumerate(zip(*probabilities)):
... plt.plot(strategy, label=f"s_{number}")
>>> plt.xlabel("Iteration")
>>> plt.ylabel("Probability")
>>> plt.title("Actions taken by row player")
>>> plt.legend()

3.14 Replicator dynamics

3.14.1 Motivating example: The Hawk Dove Game

Consider a population of animals. These animals when they interact will always share their food. Due to a genetic
mutation, some of these animals may act in an aggressive manner and not share their food. If two aggressive animals
meet they both compete and end up with no food. If an aggressive animal meets a sharing one, the aggressive one will
take most of the food.

3.14. Replicator dynamics 67

Nashpy Documentation, Release 0.0.40

These interactions can be represented using the matrix 𝐴:

𝐴 =

(︂
2 1
3 0

)︂
In this scenario: what is the likely long term effect of the genetic mutation?

Over time will:

• The population resist the mutation and all the animals continue to share their food.

• The population get taken over by the mutation and all animals become aggressive.

• A mix of animals are present in the population some act aggressively and some share.

To answer this question we will assume a vector 𝑥 represents the population. In this case:

• 𝑥1 represents the proportion of the population that shares.

• 𝑥2 represents the proportion of the population that acts aggressively.

Note that as the components of 𝑥 are proportions of the population this implies:∑︁
𝑖

𝑥𝑖 = 1

We will also assume that any given individual in the population is playing a strategy 𝜒, which:

• shares 𝜒1 proportion of the time.

• acts aggressively 𝜒2 proportion of the time.

The overall fitness of an individual in the population is then given by their expected utility (as given by 𝐴) as they
interact with the population:

𝜒𝐴𝑥

We can in fact write down the fitness corresponding to each action (sharing or being aggressive):

𝑓 = 𝐴𝑥

The average fitness in the population is then given by:

𝜑 = 𝑥𝑇 𝑓

To understand how the population will evolve relative to their fitness the following differential equation will be used:

𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖(𝑓𝑖 − 𝜑) for all 𝑖

In our case the differential equations are:

𝑑𝑥1

𝑑𝑡
= 𝑥1(2𝑥1 + 𝑥2 − 𝜑) (3.132)

𝑑𝑥2

𝑑𝑡
= 𝑥2(3𝑥1 − 𝜑)(3.133)

where:

𝜑 = 𝑥1(2𝑥1 + 𝑥2) + 𝑥2(3𝑥1)

This differential equation can then be solved numerically to show the evolution of the population over time. We can
see that it looks like in our particular situation the mutation stays within the population and a mix of both sharing and
aggressive animals will coexist.

68 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

0 200 400 600 800 1000 1200 1400
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2

3.14. Replicator dynamics 69

Nashpy Documentation, Release 0.0.40

3.14.2 The replicator dynamics equation

Given a population with 𝑁 types of individuals. Where the fitness of an individual of type 𝑖 when interacting with an
individual of type 𝑗 is given by 𝐴𝑖𝑗 where 𝐴 ∈ R𝑁×𝑁 . The replicator dynamics equation is given by:

𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖(𝑓𝑖 − 𝜑) for all 𝑖

where:

𝜑 =

𝑁∑︁
𝑖=1

𝑥𝑖𝑓𝑖(𝑥)

where 𝑓𝑖 is the population dependent fitness of individuals of type 𝑖:

𝑓𝑖(𝑥) = (𝐴𝑥)𝑖

Note that there are equivalent linear algebraic definitions to the above:

𝑓 = 𝐴𝑥 𝜑 = 𝑥𝑇𝐴𝑥

Question

For Rock Paper Scissors, what is the replicator dynamics equation?

Answer

Recalling that rock paper scissors has a payoff matrix 𝐴 given by:

𝐴 =

⎛⎝ 0 −1 1
1 0 −1
−1 1 0

⎞⎠
For a general population vector 𝑥 the population dependent fitness 𝑓 is given by:

𝑓 = 𝐴𝑥 =

⎛⎝−𝑥2 + 𝑥3

𝑥1 − 𝑥3

−𝑥1 + 𝑥2

⎞⎠
The average fitness is given by:

𝜑 = 𝑥𝑇 𝑓 = 𝑥1(𝑥3 − 𝑥2) + 𝑥2(𝑥1 − 𝑥3) + 𝑥3(𝑥2 − 𝑥1)

The replicator dynamics equation is then given by:

𝑑𝑥1

𝑑𝑡
= 𝑥1(𝑥3 − 𝑥2 − 𝜑) (3.134)

𝑑𝑥2

𝑑𝑡
= 𝑥2(𝑥1 − 𝑥3 − 𝜑)(3.135)

𝑑𝑥3

𝑑𝑡
= 𝑥3(𝑥2 − 𝑥1 − 𝜑)(3.136)

70 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Closer inspection of 𝜑 gives: 𝜑 = 0 thus:

𝑑𝑥1

𝑑𝑡
= 𝑥1(𝑥3 − 𝑥2) (3.137)

𝑑𝑥2

𝑑𝑡
= 𝑥2(𝑥1 − 𝑥3)(3.138)

𝑑𝑥3

𝑑𝑡
= 𝑥3(𝑥2 − 𝑥1)(3.139)

3.14.3 Stability of the replicator dynamics equation

Stability of the replicator dynamics equation is achieved when 𝑑𝑥𝑖

𝑑𝑡 = 0 for all 𝑖.

For a population vector 𝑥* for which 𝑑𝑥*
𝑖

𝑑𝑡 = 0 for all 𝑖 the population will not change without some other effect. This
is referred to as a stable population.

Question

For the following games, what are the stable populations?

1. Rock Paper Scissors

𝐴 =

⎛⎝ 0 −1 1
1 0 −1
−1 1 0

⎞⎠
2. Hawk Dove Game

𝐴 =

(︂
2 1
3 0

)︂

Answer

1. The replicator dynamics equation for this game are:
𝑑𝑥1

𝑑𝑡
= 𝑥1(𝑥3 − 𝑥2) (3.140)

𝑑𝑥2

𝑑𝑡
= 𝑥2(𝑥1 − 𝑥3)(3.141)

𝑑𝑥3

𝑑𝑡
= 𝑥3(𝑥2 − 𝑥1)(3.142)

For them all to be 0, this requires:

• 𝑥1 = 0 or 𝑥2 = 𝑥3

• 𝑥2 = 0 or 𝑥1 = 𝑥3

• 𝑥3 = 0 or 𝑥1 = 𝑥2

Which, through inspection in turn requires:

• 𝑥1 ̸= 0 and 𝑥2 = 𝑥3 = 0 or

• 𝑥2 ̸= 0 and 𝑥1 = 𝑥3 = 0 or

• 𝑥3 ̸= 0 and 𝑥1 = 𝑥2 = 0 or

• 𝑥1 = 𝑥2 = 𝑥3.

3.14. Replicator dynamics 71

Nashpy Documentation, Release 0.0.40

Given that 𝑥1 + 𝑥2 + 𝑥3 = 1 this leaves us with 4 possible stable populations:

1. 𝑥 = (1, 0, 0)

2. 𝑥 = (0, 1, 0)

3. 𝑥 = (0, 0, 1)

4. 𝑥 = (1/3, 1/3, 1/3)

The following plot shows each of the above populations which no longer change over time:

0 500 1000 1500
Time

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2
x3

0 500 1000 1500
Time

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2
x3

0 500 1000 1500
Time

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2
x3

0 500 1000 1500
Time

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n
pr

op
or

tio
n x1

x2
x3

2. The replicator dynamics equation for this game are:

𝑑𝑥1

𝑑𝑡
= 𝑥1(2𝑥1 + 𝑥2 − 𝜑) (3.143)

𝑑𝑥2

𝑑𝑡
= 𝑥2(3𝑥1 − 𝜑)(3.144)

where:

𝜑 = 𝑥1(2𝑥1 + 𝑥2) + 𝑥2(3𝑥1)

substituting 𝑥2 = 1− 𝑥1 here gives:
𝑑𝑥1

𝑑𝑡
= 𝑥1(𝑥1 − 1)(2𝑥1 − 1) (3.145)

𝑑𝑥2

𝑑𝑡
= −𝑥1(𝑥1 − 1)(2𝑥1 − 1)(3.146)

72 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

For them both to be 0, this requires:

• 𝑥1 = 0 or

• 𝑥1 = 1 or

• 𝑥1 = 1/2

Recalling the substition that 𝑥2 = 1− 𝑥1 this leaves us with 3 possible stable populations:

1. 𝑥 = (1, 0)

2. 𝑥 = (0, 1)

3. 𝑥 = (1/2, 1/2)

The following plot shows each of the above populations which no longer change over time:

0 500 1000 1500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2

0 500 1000 1500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2

0 500 1000 1500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2

3.14.4 Evolutionary stable strategies

Evolutionary stable strategies are strategies that when adopted by an entire population are resistant to an alternative
strategy that is initially rare.

By definition an evolutionary stable strategy corresponds to a stable population.

For the hawk dove game there are 3 stable populations:

• 𝑥 = (1, 0)

• 𝑥 = (0, 1)

• 𝑥 = (1/2, 1/2)

However, if a small deviation is made from the first two populations then the population does not “resist”. For example,
we consider the initial population 𝑥 = (1, 0) and introduce a small population aggressive behaviours to have: 𝑥 =
(1− 𝜖, 𝜖) where 𝜖 > 0. The plot below shows this with 𝜖 = 10−5:

This is also what happens if we start with a population of aggressive animals: We consider the initial population
𝑥 = (0, 1) and introduce a small population aggressive behaviours to have: 𝑥 = (𝜖, 1−𝜖) where 𝜖 > 0. The plot below
shows this with 𝜖 = 10−5:

However, this is not the case with the third stable population: 𝑥 = (1/2, 1/2). The plot below shows 𝑥 = (1/2 −
𝜖, 1/2 + 𝜖) with 𝜖 = 10−2:

3.14. Replicator dynamics 73

Nashpy Documentation, Release 0.0.40

0 2000 4000 6000 8000 10000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2

74 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

0 2000 4000 6000 8000 10000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2

3.14. Replicator dynamics 75

Nashpy Documentation, Release 0.0.40

0 2 4 6 8 10 12 14
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2

76 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

These observations can be confirmed analytically. Information on this can be found in [Fudenberg1998], [Webb2007]
and [Nowak2006].

The replicator equations were first presented in [Maynard1974].

3.14.5 The replicator-mutation dynamics equation

An extension of the replicator equation is to allow for mutation [Komarova2004]. In this case reproduction is imperfect
and individuals of a given type can give individuals of another.

This is expressed using a matrix 𝑄 where 𝑄𝑖𝑗 denotes the probability of an individual of type 𝑗 is produced by an
individual of type 𝑖.

In this case the replicator equation can be modified to give the replicator-mutation equation:

𝑑𝑥𝑖

𝑑𝑡
=

𝑁∑︁
𝑗=1

𝑥𝑗𝑓𝑗𝑄𝑗𝑖 − 𝑥𝑖𝜑 for all 𝑖

where, as before:

𝑓 = 𝐴𝑥 𝜑 = 𝑥𝑇𝐴𝑥

This can modify emergent behaviour. For the Hawk Dove game if there is a 10% change that aggressive individuals
will produce sharing ones the matrix 𝑄 is given by:

𝑄 =

(︂
1 0

1/10 9/10

)︂
The plot below shows the evolution of the system:

Question

Show that for 𝑄 = 𝐼𝑁 (the identity matrix of size 𝑁) the replicator-mutation equation corresponds to the replicator
equation.

Answer

The replicator-mutation equation is:

𝑑𝑥𝑖

𝑑𝑡
=

𝑁∑︁
𝑗=1

𝑥𝑗𝑓𝑗𝑄𝑗𝑖 − 𝑥𝑖𝜑 for all 𝑖

As 𝑄 = 𝐼𝑁 :

𝑄𝑖𝑗 =

{︃
1 if 𝑖 = 𝑗

0 otherwise

This gives:
𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖𝑓𝑖𝑄𝑖𝑖 − 𝑥𝑖𝜑 for all 𝑖 𝑄𝑖𝑗 = 0 for all 𝑖 ̸= 𝑗 (3.147)

𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖𝑓𝑖 − 𝑥𝑖𝜑 for all 𝑖 𝑄𝑖𝑖 = 1(3.148)

𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖(𝑓𝑖 − 𝜑) for all 𝑖(3.149)

As required.

3.14. Replicator dynamics 77

Nashpy Documentation, Release 0.0.40

0 200 400 600 800 1000 1200 1400
Time

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
pr

op
or

tio
n

x1
x2

78 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

3.14.6 Using Nashpy

See Use replicator dynamics for guidance of how to use Nashpy to obtain numerical solutions of the replicator dynamics
equation. See Use replicator dynamics with mutation for guidance of how to use Nashpy to obtain numerical solutions
of the replicator-mutation dynamics equation.This is what is used to obtain all the plots above.

3.15 Asymmetric replicator dynamics

The asymmetric replicator dynamics algorithm is implemented in Nashpy based on the work presented in [Elvio2011].
This is considered as the asymmetric version of the symmetric Replicator dynamics.

There exists a population with two types of individuals where each type has their own strategy set. Strategies are
assigned amongst the population. Individuals randomly encounter individuals of the opposite type and play their
assigned strategies.

As the game progresses the proportion of each type playing each strategy changes based on their previous interactions.

The row player represents the first type of individuals and the column player represents the other one.

Given two matrices 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑚×𝑛 that correspond to the utilities of the row player and column player
respectively, we define:

𝑓𝑥 = 𝐴𝑦

𝑓𝑦 = 𝑥𝑇𝐵

Where 𝑥 ∈ R𝑚×1 and 𝑦 ∈ R𝑛×1 corresponds to the population size of the strategies of the two players and 𝑓𝑥 ∈ R𝑛×1

and 𝑓𝑦 ∈ R1×𝑚 corresponds to the fitness of the strategies of the row player and the column player respectively.

Similarly, the average fitness for the two types of populations is given by 𝜑𝑥 and 𝜑𝑦 where:

𝜑𝑥 = 𝑓𝑥𝑥
𝑇

𝜑𝑦 = 𝑓𝑦𝑦

In matrix notation the rate of change of the strategies of both types of individuals is captured by:

𝑑𝑥

𝑑𝑡 𝑖
= 𝑥𝑖((𝑓𝑥)𝑖 − 𝜑𝑥) for all 𝑖

𝑑𝑦

𝑑𝑡 𝑖
= 𝑦𝑖((𝑓𝑦)𝑖 − 𝜑𝑦) for all 𝑖

3.15.1 Discussion

Stability is achieved in asymmetric replicator dynamics when both 𝑑𝑥
𝑑𝑡 = 0 and 𝑑𝑦

𝑑𝑡 = 0. Every stable steady state is a
Nash equilibria, and every Nash equilibria is a steady state in asymmetric replicator dynamics.

Similarly to Replicator dynamics, a game is not guaranteed to converge to a steady state. Find below the probability
distributions for both the row player and the column player over time, of a game that does not converge:

>>> import matplotlib.pyplot as plt
>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> B = A.transpose()
>>> game = nash.Game(A, B)

(continues on next page)

3.15. Asymmetric replicator dynamics 79

Nashpy Documentation, Release 0.0.40

(continued from previous page)

>>> x0 = np.array([0.3, 0.35, 0.35])
>>> y0 = np.array([0.3, 0.35, 0.35])
>>> xs, ys = game.asymmetric_replicator_dynamics(x0=x0, y0=y0)

>>> plt.figure(figsize=(15, 5))
>>> plt.subplot(1, 2, 1)
>>> plt.plot(xs)
>>> plt.title("Probability distribution of strategies over time for row player")
>>> plt.legend([f"s_{0}", f"s_{1}", f"s_{2}"])
>>> plt.subplot(1, 2, 2)
>>> plt.plot(ys)
>>> plt.xlabel("Timepoints")
>>> plt.ylabel("Probability")
>>> plt.title("Probability distribution of strategies over time for column player")
>>> plt.legend([f"s_{0}", f"s_{1}", f"s_{2}"])

Find below an example of a game that is able to reach a stable steady state:

>>> import matplotlib.pyplot as plt
>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[2, 2], [3, 4]])
>>> B = np.array([[4, 3], [3, 2]])
>>> game = nash.Game(A, B)
>>> x0 = np.array([0.9, 0.1])
>>> y0 = np.array([0.3, 0.7])
>>> xs, ys = game.asymmetric_replicator_dynamics(x0=x0, y0=y0)

>>> plt.figure(figsize=(15, 5))
>>> plt.subplot(1, 2, 1)
>>> plt.plot(xs)
>>> plt.title("Probability distribution of strategies over time for row player")
>>> plt.legend([f"s_{0}", f"s_{1}"])
>>> plt.subplot(1, 2, 2)
>>> plt.plot(ys)
>>> plt.xlabel("Timepoints")
>>> plt.ylabel("Probability")
>>> plt.title("Probability distribution of strategies over time for column player")
>>> plt.legend([f"s_{0}", f"s_{1}"])

3.16 Moran Processes

3.16.1 Motivating example: The Hawk Dove Game

Consider a finite population of 𝑁 animals. Similarly to the motivating example for replicator dynamics, these animals
when they interact will always share their food. Due to a genetic mutation, some of these animals may act in an
aggressive manner and not share their food. If two aggressive animals meet they both compete and end up with no
food. If an aggressive animal meets a sharing one, the aggressive one will take most of the food.

80 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

The difference with a replicator dynamics model is that it will be assumed that the size of the population is finite and
stays constant.

These interactions can be represented using the matrix 𝐴:

𝐴 =

(︂
2 1
3 0

)︂
In this scenario: what is the probability that the mutation takes over the entire population?

To answer this question we will assume a vector 𝑣 represents the population. In this case:

• 𝑣1 represents the number of individuals of the population that share.

• 𝑣2 represents the number of individuals of the population that act aggressively.

Note that as the size of the population is assumed to be constant this implies that:∑︁
𝑖

𝑥𝑖 = 𝑁

Where 𝑁 is the number of individuals in the population.

The overall fitness of an individual of a given type in a population 𝑣 is then given by the expected utility (as given by
𝐴) of individuals of that type as they interact with the population:

𝑓1 =
2(𝑣1 − 1) + 1𝑣2

𝑁 − 1
(3.150)

𝑓2 =
3𝑣1 + 1(𝑣2 − 1)

𝑁 − 1
(3.151)

Note that 𝑓𝑖 is dependent on 𝑣.

The evolutionary process defined in this chapter will assume an individual will be selected for copy proportional to
their fitness. The probability of picking an individual of a given type 𝑖 is thus given by:

𝑣𝑖𝑓𝑖
𝑣1𝑓1 + 𝑣2𝑓2

To ensure the population stays constant this requires that an individual is chosen to be removed. This is done uniformly
randomly. The probability of picking an individual of a given type 𝑖 for removal is then given by:

𝑣𝑖
𝑣1 + 𝑣2

These probabilities allow us to define a Markov process that describes the evolution of the system. Here is a diagram
showing the different states in the process for 𝑁 = 5.

The answer to our question corresponds to the probability that starting in state 𝑣 = (4, 1), we arrive at state 𝑣 = (0, 5).

The following plot shows 4 possible outcomes. In 2 of them the sharing animals resist the invasion of the aggressive
one.

3.16.2 The Moran process

First defined in [Moran1958] the Moran process assumes a constant population of 𝑁 individuals which can be of 𝑚
different types. There exists a fitness function 𝑓 : [1, . . . ,𝑚] × [1, . . . ,𝑚]𝑁 → R that maps each individual to a
numeric fitness value which is dependent on the types of the individuals in the population.

The process is defined as follows, at each step:

1. Every individual 𝑘 has their fitness 𝑓𝑘 calculated.

3.16. Moran Processes 81

Nashpy Documentation, Release 0.0.40

0 5 10 15 20
Generations

0

1

2

3

4

5

Co
un

t o
f a

gg
re

ss
iv

e
an

im
al

s

Random seed=0
Random seed=2
Random seed=4
Random seed=6

82 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

2. An individual is randomly selected for copying. This selection is done proportional to their fitness: 𝑓𝑘(𝑣). Thus,
the probability of selecting individual 𝑘 for copying is given by:

𝑓𝑘(𝑣)∑︀
ℎ=1𝑁 𝑓ℎ(𝑣)

3. An individual is selected for removal. This selection is done uniformly randomly. Thus, the probability of
selecting individual 𝑖 for removal is given by:

1/𝑁

4. An individual of the same type as the individual selected for copying is introduced to the population.

5. The individual selected for removal is removed.

The process is repeated until there is only one type of individual left in the population.

Fitness function on a game

A common representation of the fitness function 𝑓 is to use a game.

As an example consider a population with 𝑁 = 10 and 𝑚 = 3 types of individuals. The fitness of a given individual is
calculated by considering the utilities received by each individual when they interact with all other individuals. These
interactions are given by the 3× 3 matrix 𝐴:

𝐴 =

⎛⎝3 2 1
1 3 2
2 1 3

⎞⎠
𝐴𝑖𝑗 represents the utility of an individual of type 𝑖 interacting with an individual of type 𝑗.

In this setting, the fitness of an individual of type 𝑖 is:

𝑓𝑖(𝑣) = (𝑣𝑖 − 1)𝐴𝑖𝑖 +

𝑁∑︁
𝑗 ̸=𝑖,𝑗=1

𝑣𝑗𝐴𝑖𝑗

For example, if 𝑣 = (4, 5, 1) then the fitness of individuals of each type are given by:

1. Individuals of the first type:

3× 3 + 5× 2 + 1× 1 = 20

2. Individuals of the second type:

4× 3 + 4× 1 + 1× 2 = 18

3. Individuals of the third type:

0× 3 + 4× 2 + 5× 1 = 13

3.16. Moran Processes 83

Nashpy Documentation, Release 0.0.40

Selection probabilities on a game

The probability of selecting an individual of type 𝑖 for copying is given by:

𝑣𝑖 ×
(︁
(𝑣𝑖 − 1)𝐴𝑖𝑖 +

∑︀𝑁
𝑗 ̸=𝑖,𝑗=1 𝑣𝑗𝐴𝑖𝑗

)︁
∑︀𝑚

𝑖=1 𝑣𝑖 ×
(︁
(𝑣𝑖 − 1)𝐴𝑖𝑖 +

∑︀𝑁
𝑗 ̸=𝑖,𝑗=1 𝑣𝑗𝐴𝑖𝑗

)︁
So for this 3× 3 example, the probability of selecting an individual of each type for copying is given by:

1. Individuals of the first type:

4× 20

4× 20 + 5× 18 + 1× 13
=

80

183

2. Individuals of the second type:

5× 18

4× 20 + 5× 18 + 1× 13
=

90

183

3. Individuals of the third type:

1× 13

4× 20 + 5× 18 + 1× 13
=

13

183

Question

For the hawk dove game what are the probabilities of selecting an individual for copying and for removal for the
following populations:

1. 𝑣 = (4, 5)

2. 𝑣 = (3, 0)

3. 𝑣 = (6, 6)

Answer

1. For 𝑣 = (4, 5) the probabilities are given by:

Type Copying Removal

Sharing 4(3×2+5×1)
4(3×2+5×1)+5(4×3+4×0) =

44
104 4/9

Aggresive 5(4×3+4×0)
4(3×2+5×1)+5(4×3+4×0) =

60
104 5/9

2. For 𝑣 = (3, 0) the probabilities are given by:

Type Copying Removal
Sharing 1 1
Aggresive 0 0

3. For 𝑣 = (6, 6) the probabilities are given by:

84 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Type Copying Removal

Sharing 6(5×2+6×1)
6(5×2+6×1)+6(6×3+5×0) =

96
204 6/12 = 1/2

Aggresive 6(6×3+5×0)
6(5×2+6×1)+6(6×3+5×0) =

108
204 6/12 = 1/2

3.16.3 The Moran process with mutation

The Moran process can be modified to allow for mutation. When a new individual is selected for copying, there is a
𝑝 probability that they mutate to a another type from the original population (even if they are no longer present in the
population.

The following plot shows 4 possible outcomes of the Moran process of the Hawk Dove game with a probability of
mutation of 𝑝 = .2. Note that as opposed to the numerical simulations without mutation, the process does not terminate
as new types of individuals can always enter the population.

0 2 4 6 8 10 12 14
Generations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Co
un

t o
f a

gg
re

ss
iv

e
an

im
al

s

Random seed=0
Random seed=2
Random seed=4
Random seed=6

3.16. Moran Processes 85

Nashpy Documentation, Release 0.0.40

3.16.4 The Moran process with 2 types of individuals

When considering a Moran process on 2 types of individuals the fitness function is defined by 𝐴 which is, in this case
is a 2 by 2 matrix.

In the case of a only two types of individuals, the population vector 𝑣 can be replaced by an integer 𝑛 which represents
the number of individuals of the first type. The number of individuals of the second type is then given by 𝑁 − 𝑛.

In this case the random process is a specific type of process called a birth death process:

• A set of possible states: 𝑆 = {0, 1, . . . , 𝑁}

• Two absorbing states: 0 and N.

• Probabilities 𝑝𝑖𝑗 of going from state 𝑖 to 𝑗 defined by:

– 𝑝𝑖,𝑖+1 + 𝑝𝑖,𝑖−1 ≤ 1 for 1 ≤ 𝑖 ≤ 𝑁 − 1.

– 𝑝𝑖𝑖 = 1− 𝑝𝑖,𝑖+1 − 𝑝𝑖,𝑖−1 for 1 ≤ 𝑖 ≤ 𝑁 − 1.

– 𝑝00 = 𝑝𝑁𝑁 = 1.

Fixation probability

The probability of starting in state 𝑖 and the process ending in state 𝑁 is denoted by 𝑥𝑖.

The probability of a single individual of the first type being able to take over the population is denoted by 𝜌 and 𝜌 = 𝑥1.

Given a birth death process, the probability 𝑥𝑖 is given by:

𝑥𝑖 =
1 +

∑︀𝑖−1
𝑗=1

∏︀𝑗
𝑘=1 𝛾𝑘

1 +
∑︀𝑁−1

𝑗=1

∏︀𝑗
𝑘=1 𝛾𝑘

where:

𝛾𝑘 =
𝑝𝑘,𝑘−1

𝑝𝑘,𝑘+1

The proof of this result is omitted here but it allows for the specific case of the Moran process to be obtained:

The transition probabilities are then given by:

𝑝𝑖,𝑖+1 =
𝑖𝑓1(𝑖)

𝑖𝑓1(𝑖) + (𝑁 − 𝑖)𝑓2(𝑖)

𝑁 − 𝑖

𝑁
(3.152)

𝑝𝑖,𝑖−1 =
(𝑁 − 𝑖)𝑓2(𝑖)

𝑖𝑓1(𝑖) + (𝑁 − 𝑖)𝑓2(𝑖)

𝑖

𝑁
(3.153)

which gives:

𝛾𝑖 =
𝑝𝑖,𝑖−1

𝑝𝑖,𝑖+1
(3.154)

=

(𝑁−𝑖)𝑓2(𝑖)
𝑖𝑓1(𝑖)+(𝑁−𝑖)𝑓2(𝑖)

𝑖
𝑁

𝑖𝑓1(𝑖)
𝑖𝑓1(𝑖)+(𝑁−𝑖)𝑓2(𝑖)

𝑁−𝑖
𝑁

(3.155)

=
(𝑁 − 𝑖)𝑓2(𝑖)

𝑖
𝑁

𝑖𝑓1(𝑖)
𝑁−𝑖
𝑁

(3.156)

=
𝑓2(𝑖)

𝑓1(𝑖)
(3.157)

Thus, the formula for 𝑥𝑖 in the general birth death process can be used to obtain the fixation probability 𝜌 = 𝑥1.

86 Chapter 3. Nashpy Game Theory Text book

Nashpy Documentation, Release 0.0.40

Question

For the hawk dove game obtain 𝜌 for the following population sizes:

1. 𝑁 = 2

2. 𝑁 = 3

3. 𝑁 = 4

Answer

In the case of the hawk dove game we have:

𝑓1(𝑖) = 2(𝑖− 1) + 1× (𝑁 − 𝑖) = 𝑁 + 𝑖− 2

𝑓2(𝑖) = 3𝑖

1. For N = 2 we have:

𝑖 = 1

𝑓1(𝑖) 1
𝑓2(𝑖) 3
𝛾𝑖 3

Thus:

𝜌 =
1

1 + 3
=

1

4

2. For N = 3 we have:

𝑖 = 1 𝑖 = 2

𝑓1(𝑖) 1 + 1 = 2 1 + 2 = 3
𝑓2(𝑖) 3 6
𝛾𝑖 3/2 6/3=2

Thus:

𝜌 =
1

1 + 3/2 + 3/2× 2
=

1

11/2
=

2

11

3. For N = 4 we have:

𝑖 = 1 𝑖 = 2 𝑖 = 3

𝑓1(𝑖) 2 + 1 = 3 2 + 2 = 4 2 + 3 = 5
𝑓2(𝑖) 3 6 9
𝛾𝑖 1 6/4=3/2 9/5

3.16. Moran Processes 87

Nashpy Documentation, Release 0.0.40

Thus:

𝜌 =
1

1 + 1 + 1× 3/2 + 1× 3/2× 9/5
=

1

62/10
=

5

31

Below is a the fixation probability 𝜌 for more values of 𝑁

2 4 6 8 10 12 14
N

0.0

0.2

0.4

0.6

0.8

1.0
Simulated over 100 repetitions
Theoretic

3.16.5 Using Nashpy

See Use Moran processes for guidance of how to use Nashpy to obtain numerical simulations of the Moran process. See
Obtain fixation probabilities for guidance of how to use Nashpy to obtain approximations of the fixation probabilities.
This is what is used to obtain all the plots above.

88 Chapter 3. Nashpy Game Theory Text book

CHAPTER

FOUR

DISCUSSION AND CODE REFERENCE

4.1 John Nash

This library is named after the mathematician John Nash. He is most famous for his work in Game Theory that culmi-
nated in him winning a Noble prize in Economics. The book [Nasar2011] (popularized in a 2001 movie) gives a good
overview of his life.

The work he received a Noble prize for was a proof that a game always has an equilibrium [Nash1950]. His proof is
an exceptional piece of mathematics where he uses a fixed point theorem by showing that an equilibrium is equivalent
to a fixed point of a function.

Subsequently, these equilibria have been referred to as Nash equilibria.

4.2 How does Nashpy relate to Gambit

Gambit is the state of the art software library for Game Theory [McKelvey2016]. It also has a Python interface. It
handles 𝑁 ≥ 2 player games and is computationally efficient. It is a much more mature piece of software than Nashpy.

It does however sometimes prove difficult to install (because of the required C libraries), in particular installation is
not supported on Windows. In those instances you can use Game Theory Explorer which is a great web point and click
Graphical User Interface (GUI) to Gambit.

The main mission statement of Nashpy is to provide a Python library that implements algorithms that are implemented
using the scientific Python stack (numpy and scipy).

This is motivated by the fact that I wanted a Python library (not a GUI as I am keen to teach reproducibly research
methodologies) for teaching my Mathematics students. Using the Gambit Python interface is not sufficient for this as
students need to be able to install it on their own machines (without difficulty).

All the algorithms in Nashpy are implemented with readability as the main motivation. This at times comes at an
efficiency cost. For example, support-enumeration builds the entire Polytope representation (using functionality of
scipy) which is not efficient.

To summarise:

• If you want to do sophisticated efficient game theoretic computations, use Gambit.

• If you are happy to use a GUI use Game Theory Explorer.

• If you would like a Python library that only requires the common scientific python stack for two player games
you can use Nashpy.

89

http://www.gambit-project.org/
http://gte.csc.liv.ac.uk/index/
http://vknight.org/
http://www.gambit-project.org/
http://gte.csc.liv.ac.uk/index/

Nashpy Documentation, Release 0.0.40

4.3 Linear Programming Duality

This section gives an overview of Linear Programming and specifically states the Linear Programming Duality Theorem
which is necessary to prove the The minimax theorem.

An excellent review of this is given in [vonStengel2023].

4.3.1 Definition of a Linear Program

A linear program defined by 𝑀 ∈ R(𝑚×𝑛, 𝑏 ∈ R𝑚 and 𝑐 ∈ R𝑛 corresponds to:

max
𝑥∈R𝑛

𝑐𝑇𝑥

Subject to:

𝑀𝑥 ≤ 𝑏 (4.1)
𝑥𝑖 ≥ 0 for 𝑖 ≤ 𝑚(4.2)

Such a linear program is feasible if there exists some vector 𝑥 that satisfies the constraints.

4.3.2 Definition of the Dual of a Linear Program

The dual of the linear program of Definition of a Linear Program is defined by:

min
𝑦∈R𝑚

𝑦𝑇 𝑏

Subject to:

𝑀𝑇 𝑦 ≥ 𝑐 (4.3)
𝑦𝑖 ≥ 0 for 𝑖 ≤ 𝑛(4.4)

4.3.3 Linear Program Duality Theorem

If a linear program and its dual are both feasible then there exists 𝑥 and 𝑦 that are both optimal solutions such that
𝑐𝑇𝑥 = 𝑦𝑇 𝑏.

A variety of proofs of this theorem exist that take different approaches. One such proof can be found in [Vanderbei1998].

4.4 Other Python Game theory libraries

• Axelrod: a research library aimed at the study of the Iterated Prisoners dilemma [Knight2016].

• Gambit: a C library with a Python interface for the computation of equilibria [McKelvey2016]. How does Nashpy
relate to Gambit.

• Game theory explorer a web interface to gambit useful for teaching. [Savani2015]

• PyNFG: PyNFG is a Python package for modeling and solving Network Form Games.

• lrslib: A C implementation of a reverse search algorithm with modules for Nash equilibria computation.

• sagemath: The mathematical software package Sage has various algorithms for the computation of Nash equi-
libria.

90 Chapter 4. Discussion and code reference

http://axelrod.readthedocs.io/en/stable/
http://www.gambit-project.org/
http://gte.csc.liv.ac.uk/ndex/
https://pypi.python.org/pypi/PyNFG/0.1.2/
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://doc.sagemath.org/html/en/reference/game_theory/index.html

Nashpy Documentation, Release 0.0.40

4.5 Bibliography

This is a collection of various bibliographic items referenced in the documentation.

4.6 Source files

4.6.1 Subpackages

nash.algorithms package

Submodules

nashpy.algorithms.support_enumeration module

A class for a normal form game

nashpy.algorithms.support_enumeration.indifference_strategies(A: ndarray[Any,
dtype[_ScalarType_co]], B:
ndarray[Any,
dtype[_ScalarType_co]],
non_degenerate: bool = False, tol:
float = 1e-16)→
Generator[Tuple[bool, bool, Any,
Any], Any, None]

A generator for the strategies corresponding to the potential supports

Parameters

• A (array) – The row player utility matrix.

• B (array) – The column player utility matrix

• non_degenerate (bool) – Whether or not to consider supports of equal size. By default
(False) only considers supports of equal size.

• tol (float) – A tolerance parameter for equality.

Yields
Generator – A generator of all potential strategies that are indifferent on each potential support.
Return False if they are not valid (not a probability vector OR not fully on the given support).

nashpy.algorithms.support_enumeration.is_ne(strategy_pair: tuple, support_pair: Tuple[ndarray[Any,
dtype[_ScalarType_co]], ndarray[Any,
dtype[_ScalarType_co]]], payoff_matrices:
Tuple[ndarray[Any, dtype[_ScalarType_co]], ndarray[Any,
dtype[_ScalarType_co]]])→ bool

Test if a given strategy pair is a pair of best responses

Parameters

• strategy_pair (tuple) – a 2-tuple of numpy arrays.

• support_pair (tuple) – a 2-tuple of numpy arrays of integers.

• payoff_matrices (tuple) – a 2-tuple of numpy array of payoff matrices.

4.5. Bibliography 91

Nashpy Documentation, Release 0.0.40

Returns
True if a given strategy pair is a pair of best responses.

Return type
bool

nashpy.algorithms.support_enumeration.obey_support(strategy, support: ndarray[Any,
dtype[_ScalarType_co]], tol: float = 1e-16)→
bool

Test if a strategy obeys its support

Parameters

• strategy (array) – A given strategy vector

• support (array) – A strategy support

• tol (float) – A tolerance parameter for equality.

Returns
whether or not that strategy does indeed have the given support

Return type
bool

nashpy.algorithms.support_enumeration.potential_support_pairs(A: ndarray[Any,
dtype[_ScalarType_co]], B:
ndarray[Any,
dtype[_ScalarType_co]],
non_degenerate: bool = False)→
Generator[tuple, Any, None]

A generator for the potential support pairs

Parameters

• A (array) – The row player utility matrix.

• B (array) – The column player utility matrix

• non_degenerate (bool) – Whether or not to consider supports of equal size. By default
(False) only considers supports of equal size.

Yields
Generator – A pair of possible supports.

nashpy.algorithms.support_enumeration.powerset(n: int)→ Iterator[Tuple[Any, ...]]
A power set of range(n)

Based on recipe from python itertools documentation:

https://docs.python.org/2/library/itertools.html#recipes

Parameters
n (int) – The defining parameter of the powerset.

Returns
The powerset

Return type
Iterator

92 Chapter 4. Discussion and code reference

https://docs.python.org/2/library/itertools.html#recipes

Nashpy Documentation, Release 0.0.40

nashpy.algorithms.support_enumeration.solve_indifference(A, rows=None, columns=None)→ bool |
Any

Solve the indifference for a payoff matrix assuming support for the strategies given by columns

Finds vector of probabilities that makes player indifferent between rows. (So finds probability vector for corre-
sponding column player)

Parameters

• A (array) – The row player utility matrix.

• rows (array) – Array of integers corresponding to rows to consider.

• columns (array) – Array of integers corresponding to columns to consider.

Returns
The solution to the indifference equations.

Return type
Union

nashpy.algorithms.support_enumeration.support_enumeration(A: ndarray[Any,
dtype[_ScalarType_co]], B:
ndarray[Any, dtype[_ScalarType_co]],
non_degenerate: bool = False, tol: float
= 1e-16)→ Generator[Tuple[bool,
bool], Any, None]

Obtain the Nash equilibria using support enumeration.

Algorithm implemented here is Algorithm 3.4 of [Nisan2007]

1. For each k in 1. . .min(size of strategy sets)

2. For each I,J supports of size k

3. Solve indifference conditions

4. Check that have Nash Equilibrium.

Parameters

• A (array) – The row player utility matrix.

• B (array) – The column player utility matrix

• non_degenerate (bool) – Whether or not to consider supports of equal size. By default
(False) only considers supports of equal size.

• tol (float) – A tolerance parameter for equality.

Yields
Generator – The equilibria.

4.6. Source files 93

Nashpy Documentation, Release 0.0.40

nashpy.algorithms.vertex_enumeration module

A class for the vertex enumeration algorithm

nashpy.algorithms.vertex_enumeration.vertex_enumeration(A: ndarray[Any, dtype[_ScalarType_co]],
B: ndarray[Any, dtype[_ScalarType_co]])
→ Generator[Tuple[float, float], Any, None]

Obtain the Nash equilibria using enumeration of the vertices of the best response polytopes.

Algorithm implemented here is Algorithm 3.5 of [Nisan2007]

1. Build best responses polytopes of both players

2. For each vertex pair of both polytopes

3. Check if pair is fully labelled

4. Return the normalised pair

Parameters

• A (array) – The row player utility matrix.

• B (array) – The column player utility matrix

Yields
Generator – The equilibria.

nashpy.algorithms.lemke_howson module

A class for the Lemke Howson algorithm

nashpy.algorithms.lemke_howson.lemke_howson(A: ndarray[Any, dtype[_ScalarType_co]], B: ndarray[Any,
dtype[_ScalarType_co]], initial_dropped_label: int = 0,
lexicographic: bool = True)→ Tuple[ndarray[Any,
dtype[_ScalarType_co]], ndarray[Any,
dtype[_ScalarType_co]]]

Obtain the Nash equilibria using the Lemke Howson algorithm implemented using integer pivoting.

Algorithm implemented here is Algorithm 3.6 of [Nisan2007].

1. Start at the artificial equilibrium (which is fully labeled)

2. Choose an initial label to drop and move in the polytope for which the vertex has that label to the edge that
does not share that label. (This is implemented using integer pivoting)

3. A label will now be duplicated in the other polytope, drop it in a similar way.

4. Repeat steps 2 and 3 until have Nash Equilibrium.

Parameters

• A (array) – The row player payoff matrix

• B (array) – The column player payoff matrix

• initial_dropped_label (int) – The initial dropped label.

• lexicographic (bool) – Whether to apply lexicographic sorting during pivoting, default
True. Lexiographic sorting ensures solutions on degenerate games

94 Chapter 4. Discussion and code reference

Nashpy Documentation, Release 0.0.40

Returns
An equilibria

Return type
Tuple

nash.learning package

Submodules

nashpy.learning.fictitious_play module

Code to carry out fictitious learning

nashpy.learning.fictitious_play.fictitious_play(A: ndarray[Any, dtype[_ScalarType_co]], B:
ndarray[Any, dtype[_ScalarType_co]], iterations: int,
play_counts: Any | None = None)→ Generator

Implement fictitious play

Parameters

• A (array) – The row player payoff matrix.

• B (array) – The column player payoff matrix.

• iterations (int) – The number of iterations of the algorithm.

• play_counts (Optional) – The play counts.

Yields
Generator – The play counts.

nashpy.learning.fictitious_play.get_best_response_to_play_count(A: ndarray[Any,
dtype[_ScalarType_co]],
play_count: ndarray[Any,
dtype[_ScalarType_co]])→ int

Returns the best response to a belief based on the playing distribution of the opponent

Parameters

• A (array) – The utility matrix.

• play_count (array) – The play counts.

Returns
The action that corresponds to the best response.

Return type
int

nashpy.learning.fictitious_play.update_play_count(play_count: ndarray[Any, dtype[_ScalarType_co]],
play: int)→ ndarray[Any, dtype[_ScalarType_co]]

Update a belief vector with a given play

Parameters

• play_count (array) – The play counts.

• play (int) – The given play.

4.6. Source files 95

Nashpy Documentation, Release 0.0.40

Returns
The updated play counts.

Return type
array

4.6.2 Submodules

4.6.3 nashpy.game module

A class for a normal form game

class nashpy.game.Game(*args: Any)
Bases: object

A class for a normal form game.

Parameters

• A (-) – non zero sum games.

• B (2 dimensional list/arrays representing the payoff matrices for) – non
zero sum games.

• A – zero sum game.

asymmetric_replicator_dynamics(x0=None, y0=None, timepoints=None)
Returns two arrays, corresponding to the two players, showing the probability of each strategy being played
over time using the asymmetric replicator dynamics algorithm.

Parameters

• x0 (array) – The initial population distribution of the row player.

• y0 (array) – The initial population distribution of the column player.

• timepoints (array) – The iterable of timepoints.

Returns
The 2 population distributions over time.

Return type
Tuple

fictitious_play(iterations, play_counts=None)
Return a given sequence of actions through fictitious play. The implementation corresponds to the descrip-
tion of chapter 2 of [Fudenberg1998].

1. Players have a belief of the strategy of the other player: a vector representing the number of times the
player has chosen a given strategy. 2. Players choose a best response to the belief. 3. Players update their
belief based on the latest choice of the opponent.

Parameters

• iterations (int) – The number of iterations of the algorithm.

• play_counts (array) – The play counts.

Returns
The play counts

Return type
Generator

96 Chapter 4. Discussion and code reference

Nashpy Documentation, Release 0.0.40

fixation_probabilities(initial_population, repetitions, replacement_stochastic_matrix: ndarray[Any,
dtype[_ScalarType_co]] | None = None, interaction_graph_adjacency_matrix:
ndarray[Any, dtype[_ScalarType_co]] | None = None)

Return the fixation probabilities for all types of individuals.

The returned array will have the same dimension as the number of rows or columns as the payoff matrix
A. The ith element of the returned array corresponds to the probability that the ith strategy becomes fixed
given the initial population.

This is a stochastic algorithm and the probabilities are estimated over a number of repetitions.

Parameters

• initial_population (array) – the initial population

• repetitions (int) – The number of iterations of the algorithm.

• replacement_stochastic_matrix (array) – Individual i chosen for replacement will
replace individual j with probability P_{ij}. Default is None: this is equivalent to P_{ij} =
1 / N for all i, j.

• interaction_graph_adjacency_matrix (array) – the adjacency matrix for the inter-
action graph G: individuals of type i interact with individuals of type j count towards fitness
iff G_{ij} = 1. Default is None: if so a complete graph is used – this corresponds to all
individuals interacting with each other (with no self interactions)

Returns
The fixation probability of each type.

Return type
array

is_best_response(sigma_r, sigma_c)
Checks if sigma_r is a best response to sigma_c and vice versa.

Parameters

• sigma_r (array) – The row player strategy

• sigma_c (array) – The column player strategy

Returns
A pair of booleans, the first indicates if sigma_r is a best response to sigma_c. The second
indicates if sigma_c is a best response to sigma_r.

Return type
tuple

lemke_howson(initial_dropped_label)
Obtain the Nash equilibria using the Lemke Howson algorithm implemented using integer pivoting.

Algorithm implemented here is Algorithm 3.6 of [Nisan2007].

1. Start at the artificial equilibrium (which is fully labeled)

2. Choose an initial label to drop and move in the polytope for which the vertex has that label to the edge
that does not share that label. (This is implemented using integer pivoting)

3. A label will now be duplicated in the other polytope, drop it in a similar way.

4. Repeat steps 2 and 3 until have Nash Equilibrium.

Parameters
initial_dropped_label (int) – The initial dropped label.

4.6. Source files 97

Nashpy Documentation, Release 0.0.40

Returns
An equilibria

Return type
Tuple

lemke_howson_enumeration()

Obtain Nash equilibria for all possible starting dropped labels using the lemke howson algorithm. See
Game.lemke_howson for more information.

Note: this is not guaranteed to find all equilibria.

Yields
Tuple – An equilibria

linear_program()

Returns the Nash Equilibrium for a zero sum game by solving the Linear Program that corresponds to the
minimax theorem.

Returns
The Nash equilibria

Return type
tuple

Raises
ValueError – A value error is raised if the game is not zero sum

moran_process(initial_population, mutation_probability=0, replacement_stochastic_matrix: ndarray[Any,
dtype[_ScalarType_co]] | None = None, interaction_graph_adjacency_matrix:
ndarray[Any, dtype[_ScalarType_co]] | None = None)

Return a generator of population across the Moran process. The last population is when only a single type
of individual is present in the population.

Parameters

• initial_population (array) – the initial population

• mutation_probability (float) – the probability of an individual selected to be copied
mutates to another individual from the original set of strategies (even if they are no longer
present in the population).

• replacement_stochastic_matrix (array) – Individual i chosen for replacement will
replace individual j with probability P_{ij}. Default is None: this is equivalent to P_{ij} =
1 / N for all i, j.

• interaction_graph_adjacency_matrix (array) – the adjacency matrix for the inter-
action graph G: individuals of type i interact with individuals of type j count towards fitness
iff G_{ij} = 1. Default is None: if so a complete graph is used – this corresponds to all
individuals interacting with each other (with no self interactions)

Returns
The generations.

Return type
Generator

replicator_dynamics(y0=None, timepoints=None, mutation_matrix=None)
Implement replicator dynamics Return an array showing probability of each strategy being played over
time. The total population is constant. Strategies can either stay constant if equilibria is achieved, replicate
or die.

98 Chapter 4. Discussion and code reference

Nashpy Documentation, Release 0.0.40

Parameters

• y0 (array) – The initial population distribution.

• timepoints (array) – The iterable of timepoints.

• mutation_matrix (array) – The mutation rate matrix. Element [i, j] gives the probabil-
ity of an individual of type i mutating to an individual of type j. Default behaviour is to be
the identity matrix which corresponds to no mutation.

Returns
The population distributions over time.

Return type
array

stochastic_fictitious_play(iterations, play_counts=None, etha=0.1, epsilon_bar=0.01)
Return a given sequence of actions and mixed strategies through stochastic fictitious play. The implemen-
tation corresponds to the description given in [Hofbauer2002].

Parameters

• iterations (int) – The number of iterations of the algorithm.

• play_counts (array) – The play counts.

• etha (float) – The noise parameter for the logit choice function.

• epsilon_bar (float) – The maximum stochastic perturbation.

Returns
The play counts

Return type
Generator

support_enumeration(non_degenerate=False, tol=1e-16)
Obtain the Nash equilibria using support enumeration.

Algorithm implemented here is Algorithm 3.4 of [Nisan2007].

1. For each k in 1. . .min(size of strategy sets)

2. For each I,J supports of size k

3. Solve indifference conditions

4. Check that have Nash Equilibrium.

Parameters

• non_degenerate (bool) – Whether or not to consider supports of equal size. By default
(False) only considers supports of equal size.

• tol (float) – A tolerance parameter for equality.

Returns
The equilibria.

Return type
generator

4.6. Source files 99

Nashpy Documentation, Release 0.0.40

vertex_enumeration()

Obtain the Nash equilibria using enumeration of the vertices of the best response polytopes.

Algorithm implemented here is Algorithm 3.5 of [Nisan2007].

1. Build best responses polytopes of both players

2. For each vertex pair of both polytopes

3. Check if pair is fully labelled

4. Return the normalised pair

Returns
The equilibria.

Return type
generator

4.6.4 Module contents

A library with algorithms on 2 player games.

100 Chapter 4. Discussion and code reference

CHAPTER

FIVE

CONTRIBUTOR DOCUMENTATION

This is guide explains the various tools and steps used to contribute code to Nashpy.

5.1 Tutorial: make a contribution to the documentation

In this tutorial we will make a contribution to the documentation of Nashpy.

5.1.1 Forking the repository

Navigate to http://github.com and create an account. If you are in education you can apply for a specific education
account here: https://education.github.com.

Navigate to the Github repository for Nashpy: https://github.com/drvinceknight/Nashpy. This is the hub for develop-
ment of the source code. You cannot make modification to this copy of the source code so you need to create your own
copy under your Github account. You do this by creating a fork. Do this by clicking the Fork button and following the
instructions:

101

http://github.com
https://education.github.com
https://github.com/drvinceknight/Nashpy

Nashpy Documentation, Release 0.0.40

5.1.2 Cloning the repository

Once we have a fork of the repository on your Github account, create a copy of it to your computer. This is called
cloning. Do this by clicking the Code button and copying the address of the repository to your clipboard:

102 Chapter 5. Contributor documentation

Nashpy Documentation, Release 0.0.40

If you have not installed git go to https://git-scm.com and install.

Now to create a clone of the source code open your command line tool and type the following (replace <your
username> with your Github username):

$ git clone https://github.com/<your username>/Nashpy.git

This will download the source code to your computer:

$ git clone https://github.com/<your username>/Nashpy.git
Cloning into 'Nashpy'...
remote: Enumerating objects: 1813, done.
remote: Counting objects: 100% (362/362), done.
remote: Compressing objects: 100% (225/225), done.
remote: Total 1813 (delta 160), reused 233 (delta 79), pack-reused 1451
Receiving objects: 100% (1813/1813), 439.94 KiB | 2.67 MiB/s, done.
Resolving deltas: 100% (905/905), done.

5.1. Tutorial: make a contribution to the documentation 103

https://git-scm.com
https://github.com

Nashpy Documentation, Release 0.0.40

5.1.3 Creating a branch

In order to modify the source code you must create a new branch. After cloning, first change directory in to the Nashpy
source code:

$ cd Nashpy

Now, to keep the changes you are about to make separate from the main source code, create a branch:

$ git branch add-name-to-contributors-list

Now checkout to that branch:

$ git checkout add-name-to-contributors-list

5.1.4 Modifying the documentation

Using your preferred editor, open the file Nashpy/docs/contributing/reference/contributors/index.rst.
If you do not have a preferred editor Visual Studio Code is recommended.

Now add you name to the file (replace <your username> with your Github username):

List of contributors

- `@drvinceknight <https://github.com/drvinceknight>`_
- `@<your username> <https://github.com/<your username>`_

5.1.5 Checking the modification

To build the documentation, first create a virtual environment specifically for purposes to work on Nashpy:

$ python -m venv env

This creates a directory env which holds a separate version of python. To tell your command line tool to now use this
version:

On Linux or macOS type:

$ source env/bin/activate

On Windows type:

$ env\Scripts\activate

Now install the Nashpy software in to this environment:

$ python -m pip install flit
$ python -m flit install --symlink

To build the documentation:

104 Chapter 5. Contributor documentation

https://code.visualstudio.com

Nashpy Documentation, Release 0.0.40

$ cd docs
$ sphinx-build -b html . _build/html
Running Sphinx v3.1.2
loading pickled environment... done
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 2 source files that are out of date
updating environment: 1 added, 2 changed, 1 removed
reading sources... [100%] contributing/tutorial/index
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] index
generating indices... genindex py-modindexdone
highlighting module code... [100%] nashpy.learning.fictitious_play
writing additional pages... searchdone
copying images... [100%] _static/contributing/tutorial/cloning/main.png
copying static files... ... done
copying extra files... done
dumping search index in English (code: en)... done
dumping object inventory... done
build succeeded.

The HTML pages are in _build/html.

You can open _build/html/index.html in a browser to see the documentation locally which should include the
changes you made.

5.1.6 Running the test suite

You can run the entire test suite which will check that this modification has not caused any problems:

$ python -m pip install tox
$ python -m tox

5.1.7 Committing the change

Now you need to stage this file:

$ git add docs/contributing/reference/contributors/index.rst

Now commit this file:

$ git commit

This will open a text editor where you can write your commit title and message:

Add <your username> to list of contributors

I am doing the contribution tutorial.

Closing the editor will commit the changes you made.

5.1. Tutorial: make a contribution to the documentation 105

Nashpy Documentation, Release 0.0.40

5.1.8 Pushing the change to Github

Now that all that is done, you are going to send the changes back to your copy of the source code on Github:

$ git push origin add-name-to-contributors-list

5.1.9 Opening a Pull Request

You now have 2 copies of the modified source code of Nashpy. One locally on your computer, the other under your
Github account. In order to include those changes in to the main source code of Nashpy you will open a Pull request.

To do this, go to your fork of the Nashpy repository: https://github.com/<your username>/Nashpy. You should
see a Compare and Pull Request button:

Once you have clicked on that, you can review your changes and then eventually click on Create pull request to
create the Pull Request.

106 Chapter 5. Contributor documentation

Nashpy Documentation, Release 0.0.40

5.1.10 Making further modifications

Once a Pull Request is opened, a number of automated checks will start. This will check the various software tests but
also build a viewable version of the documentation.

You can click on the corresponding details button to see any of these:

Your modification will also be reviewed:

To make any required changes, modify the files.

Then stage and commit the files:

$ git add docs/contributing/reference/contributors/index.rst
$ git commit

This will open a text editor where you can write your commit title and message (similarly to before).

5.1. Tutorial: make a contribution to the documentation 107

Nashpy Documentation, Release 0.0.40

Once this is done, push the code to Github which will automatically update the pull request:

$ git push origin add-name-to-contributors-list

This final process of making further modifications might repeat itself and eventually the Pull Request will be merged
and your changes included in the main version of the Nashpy source code.

5.2 How to

How to:

5.2.1 How to fork the repository

1. Navigate to https://github.com/drvinceknight/Nashpy

2. Click on Fork

3. Follow any remaining instructions, for example if you have an organisation account on Github you will be
prompted to say which account you would like to fork with.

5.2.2 How to clone the repository

In order to obtain a copy of your fork of the repository on github to your local machine run the following at your
command line:

$ git clone https://github.com/<username>/Nashpy.git

5.2.3 How to update from upstream

In order to bring your local repository up to date with any upstream changes:

$ git remote add upstream https://github.com/drvinceknight/Nashpy.git
$ git pull upstream main

The above:

1. Creates a new remote with alias upstream that points at the main source repository for Nashpy. You can list all
your remote repositories by running:

$ git remote -v

2. Pulls the latest changes from the main branch of the upstream repository.

108 Chapter 5. Contributor documentation

https://github.com/drvinceknight/Nashpy

Nashpy Documentation, Release 0.0.40

5.2.4 How to create a branch

To create a branch with name <name-of-branch> run:

$ git branch <name-of-branch>

To go to that branch:

$ git checkout <name-of-branch>

How to branch from a specific branch, tag or commit

To create a branch with name <name-of-branch> from a specific branch, tag or commit with name <location> run:

$ git branch <name-of-branch> <location>

How to create a branch and checkout to it at the same time

You can create a branch with name <name-of-branch> and checkout in a single command:

$ git checkout -b <name-of-branch>

5.2.5 How to create a virtual environment

To create a virtual environment with name <name> run:

$ python -m venv <name>

How to activate <name>

On Linux or macOS type:

$ source env/bin/activate

On Windows type:

$ env\Scripts\activate

5.2.6 How to install the library from source

To install the library from the source files:

$ python -m pip install flit
$ python -m flit install

5.2. How to 109

Nashpy Documentation, Release 0.0.40

How to install an editable version of the library from source

If you want to install a version of the library from the source files so that modifications of the source files are directly
usable:

$ python -m flit install --symlink

5.2.7 How to run tests

To install tox:

$ python -m pip install tox

To run all tests:

$ python -m tox

If you want to run the tests across a single version of Python:

$ python -m tox -e <version>

where version is either py38 or py39.

5.2.8 How to check for insensitive language

The documentation is checked for insensitive or inconsiderate language using alex.

How to install alex

To install alex run:

$ npm install alex --global

Note that this required node, information on install node is available here: https://www.npmjs.com/get-npm

How to run alex

To run alex on the documentation:

$ alex docs**/*.rst

To run alex on the README.md file:

$ alex README.md

110 Chapter 5. Contributor documentation

https://github.com/get-alex/alex#cli
https://www.npmjs.com/get-npm

Nashpy Documentation, Release 0.0.40

How to ignore some checks

To ignore some specific checks annotations can be used. For example John Nash is annotated to ignore insensitive
related to gendered pronouns:

.. <!--alex disable he-she-->

.. <!--alex disable her-him-->

This library is named after the mathematician John Nash. He is most famous for
his work in Game Theory that culminated in him winning a Noble prize in
Economics. The book [Nasar2011]_ (popularized in a 2001 movie) gives a good
overview of his life.

The work he received a Noble prize for was a proof that a game **always** has
an equilibrium [Nash1950]_. His proof is an exceptional piece of mathematics
where he uses a fixed point theorem by showing that an equilibrium is equivalent
to a fixed point of a function.

.. <!--alex enable he-she-->

.. <!--alex enable her-him-->

Another example is the README.md file where an annotation is added to ignore a specific use of the word “bi”:

Usage

Create bi-matrix games by passing two 2 dimensional arrays/lists:

5.2.9 How to write a docstring

All functionality needs to have a documentation string (docstrings). The convention used in Nashpy is to follow
Numpy’s docstring convention:

def <function>(<signature>):
"""
<short summary>

Parameters

<paramter> : <type>

<description>
<paramter> : <type>

<description>
...
<paramter> : <type>

<description>

Returns

<type>

<description>
"""

5.2. How to 111

https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

Nashpy Documentation, Release 0.0.40

If the function/method does not return anything but is instead a generator then Returns should be replaced with
Yields.

How to check dosctrings in a module

Running tests with tox will automatically check formatting of docstrings.

If you want to check a specific file, use darglint:

$ python -m pip install darglint
$ darglint -s numpy <path_to_file>

5.2.10 How to write a type hint

Type hints allow to annotate code in a machine and human readable way so as to indicate the types of each variable.
The general syntax of this is:

def <function>(
variable_1: type = default_value,
variable_2: type,
) -> type

For example here is the annotated source code for some internal functionality:

import numpy as np
import numpy.typing as npt

def make_tableau(M: npt.NDArray) -> npt.NDArray:
"""
Make a tableau for the given matrix M.
This tableau corresponds to the polytope of the form:
Mx <= 1 and x >= 0

Parameters

M : array

A matrix with linear coefficients defining the polytope.
Returns

array

The tableau that corresponds to the polytope.
"""
return np.append(

np.append(M, np.eye(M.shape[0]), axis=1),
np.ones((M.shape[0], 1)),
axis=1,

)

112 Chapter 5. Contributor documentation

https://github.com/terrencepreilly/darglint

Nashpy Documentation, Release 0.0.40

How to check type annotations in a module

Running tests with tox will automatically check type annotations.

If you want to check a specific file, use Mypy:

$ python -m pip install mypy
$ python -m mypy --ignore-missing-imports <path_to_file>

5.2.11 How to write tests

The pytest framework is used for writing and running tests for Nashpy.

Tests should be written in one of the following locations:

• In a preexisting file in the test/ directory.

• In a new file in the test/ directory.

Thanks to pytest the format for a test is:

def test_<functionality>():
"""
<short summary if necessary>
"""
<code logic>
assert <boolean>

For guidance on how to run tests see: How to run tests.

When writing a new test it is good practice to ensure the test fails (either by modifying the test or by modifying the
source code): this ensures that pytest is running the test in question.

Note that when adding new functionality the coverage of the test suite will be checked using coverage. Thus, in practice
multiple tests will need to be written to test new functionality completely.

Hypothesis

Property based tests are tests that use random sampling in an efficient manner to test given properties as opposed to
specific values. Nashpy uses hypothesis for this.

For example the following tests that for any given M, which is a 3 by 3 numpy integer array, the length of the output of
get_derivative_of_fitness is as expected:

from hypothesis import given, settings
from hypothesis.strategies import integers
from hypothesis.extra.numpy import arrays

@given(M=arrays(np.int8, (3, 3)))
def test_property_get_derivative_of_fitness(M):

t = 0
x = np.zeros(M.shape[1])
derivative_of_fitness = get_derivative_of_fitness(x, t, M)

assert len(derivative_of_fitness) == len(x)

5.2. How to 113

https://mypy.readthedocs.io/en/stable/introduction.html

Nashpy Documentation, Release 0.0.40

5.2.12 How to make a commit

To commit changes to a given code <file.py>.

First, stage it:

$ git add <file.py>

Now that the file is staged, create a commit:

$ git commit

This will open a text editor (a default text editor of your choice can be set). In there write a commit message in the
following format:

<commit title>

<commit message>

Save and exit from the text editor and your commit should be applied.

Commit message style

The <commit title> should be short and follow the style: “If this commit is applied it will <commit title> will
happen.”

The <commit message> should include further details and can go over many lines.

Here is some good guidance on writing commit messages: https://chris.beams.io/posts/git-commit/

Do not use git commit -m "<commit message>"

It is possible to write a commit message directly as you make the commit by typing:

$ git commit -m <commit title>

This is not recommended as it encourages unclear commit messages.

5.2.13 How to push changes

In order to push a copy of your committed changes on the <branch-name> branch to your fork of the repository on
github run the following at your command line:

$ git push origin <branch-name>

114 Chapter 5. Contributor documentation

https://chris.beams.io/posts/git-commit/

Nashpy Documentation, Release 0.0.40

5.2.14 How to open a pull request

Once you have pushed your changes to github you can open a request for these changes to be incorporated in to the main
repository by going to your fork of the Nashpy repository: https://github.com/<your username>/Nashpy. You
should see a Compare and Pull Request button:

Once you have clicked on that, you can review your changes and then eventually click on Create pull request to
create the Pull Request.

5.2.15 How to format markdown files

The markdown files are all formatted according to a consistent style using mdformat.

How to install mdformat

To install mdformat run:

$ python -m pip install mdformat

5.2. How to 115

https://mdformat.readthedocs.io/en/stable/

Nashpy Documentation, Release 0.0.40

How to format all markdown files

To run mdformat on a specific <file>:

$ python -m mdformat <file>

This will reformat <file> in place.

To run mdformat recursively from the current directory:

$ python -m mdformat .

How to check markdown files

To check the format of <file>:

$ python -m mdformat --check <file>

5.3 Discussion

5.3.1 The code structure of Nashpy

The directory structure

The directory structure for Nashpy is:

src/
tests/
docs/
CHANGES.md
CITATION.md
LICENSE
README.md
paper.bib
paper.md
pyproject.toml
.readthedocs.yml
setup.cfg
tox.ini

Here is a brief description of each of these:

116 Chapter 5. Contributor documentation

Nashpy Documentation, Release 0.0.40

The src/ directory

The src/ directory contains the source code. It’s structure is as follows:

src/
nashpy

__init__.py
game.py
algorithms/
integer_pivoting/
learning/
polytope/

• The __init__.py file contains the various commands to import all the functionality of the library.

• The game.py file contains the main nashpy.Game class.

• The algorithms/ directory contains further modules with algorithms for computation of Nash equilibria.

• The integer_pivoting/ directory contains further modules with algorithms for integer pivoting.

• The learning/ directory contains further modules for various learning algorithms.

• The polytope directory contains further modules with code for best response polytopes.

The tests/ directory

This contains all the test files.

The docs/ directory

The documentation is written using the Diataxis framework [Procida2021]. As well as various configuration files for
sphinx there are 5 main subdirectories:

docs/
contributing

discussion/
how-to/
index.rst
reference/
tutorial/

discussion/
how-to/
index.rst
reference/
tutorial/

• The contributing/ directory contains the specific contributing documentation. Which itself is written using
Diataxis [Procida2021].

• The discussion/ directory contains source files for the discussion described at [Procida2021] as: “explanation
is discussion that clarifies and illuminates a particular topic.”

• The reference/ directory contains source files for the reference described at [Procida2021] as: “reference
guides are technical descriptions of the machinery and how to operate it.”

5.3. Discussion 117

Nashpy Documentation, Release 0.0.40

• The how-to/ directory contains source files for the how to guides described at [Procida2021] as: “how-to guides
are directions that take the reader through the steps required to solve a real-world problem”

• The tutorial/ directory contains source files for the tutorial described at [Procida2021] as: “tutorials are
lessons that take the reader by the hand through a series of steps to complete a project of some kind.”

The CHANGES.md file

Makes a note of different changes in versions of Nashpy.

The CITATION.md file

Contains information for citing Nashpy.

The LICENSE file

Contains the license.

The README.md file

Contains the first entry point documentation to the Nashpy project.

The paper.bib and paper.md files

These are the source files for the Journal of Open Source Software paper written about Nashpy: [Knight2018b].

The pyproject.toml file

Contains all the build instructions for packaging Nashpy and is used by flit.

The .readthedocs.yml file

This includes configuration settings for the online service that hosts the documentation read the docs.

The setup.cfg file

Contains some configuration instructions for testing.

118 Chapter 5. Contributor documentation

https://joss.theoj.org

Nashpy Documentation, Release 0.0.40

The tox.ini file

Contains the instructions for the test runner tox.

The Game class

The nashpy.Game class is an umbrella class that creates an object oriented interface to all functionality of Nashpy as
methods on a game.

5.3.2 Writing clean tests with pytest

The pytest framework allows for cleaner tests to be written but also for efficient running of tests with multiple plugins.

Plugins

Coverage: pytest-cov

The pytest-cov plugin allows you to run coverage checks with pytest.

Flake8: pytest-flake8

The pytest-flake8 plugin allows you to run flake8 checks with pytest.

Stochastic effects: pytest-randomly

The pytest-randomly plugin does two things (for Nashpy):

1. It randomly shuffles the order of tests: this ensures that tests passing is not dependent on the order in which they
run.

2. It seeds stochastic tests to ensure that any exceptions are reproducible. In practice this has little effect here as
ideally stochastic tests are seeded or written with hypothesis.

Nicer look: pytest-sugar

The pytest-sugar plugin changes the look of pytest.

Further plugins

The Talk Python to Me podcast episode 267 featured a discussion of a number of pytest plugins: https://talkpython.fm/
episodes/show/267/15-amazing-pytest-plugins

5.3. Discussion 119

https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest-cov
https://github.com/tholo/pytest-flake8
https://github.com/pytest-dev/pytest-randomly
https://github.com/Teemu/pytest-sugar
https://talkpython.fm/episodes/show/267/15-amazing-pytest-plugins
https://talkpython.fm/episodes/show/267/15-amazing-pytest-plugins

Nashpy Documentation, Release 0.0.40

5.3.3 Testing across environments with tox

The tox project allows for the automation of many tasks related to Python packaging and testing.

For Nashpy it is used to:

1. Configure all tests.

2. Test across multiple python versions.

Configure all tests

All test commands are written in tox.ini. This include things like checking style with black and presence of docstrings
with interrogate. Running all the checks is done with a single standard command: python -m tox.

Note that checking for insensitive language in documentation is not configured or run by tox.

Test across multiple python versions

This is done thanks to configurations written in tox.ini:

[tox]
isolated_build = True
envlist = py38, py39

5.3.4 Installing and packaging with flit

TODO

5.3.5 Virtual environments

TODO

5.3.6 Checking code is tested with coverage

TODO

5.3.7 Testing with properties with hypothesis

TODO

120 Chapter 5. Contributor documentation

https://tox.readthedocs.io/en/latest/

Nashpy Documentation, Release 0.0.40

5.3.8 Ensuring consistent code style with Black

TODO

5.3.9 Static code analysis with flake8

TODO

5.3.10 Checking the presence of docstrings with interrogate

TODO

5.3.11 Checking the format of docstrings with darglint

Documentation strings, more commonly referred to as docstrings in python are strings that directly document a function.
Their presence is checked using Checking the presence of docstrings with interrogate but the particular format they are
written in is checked using darglint.

Once installed darlint can be used to check one of three docstring styles:

1. Google style guide

2. Sphinx style guide

3. Numpy style guide

For example, consider the file main.py:

def get_mean(collection):
"""
Obtain the average of a collection of objects.

Parameters

collection : list

A list of numbers

Returns

float

The mean of the numbers.
"""
return sum(collection) / len(collection)

After installing darglint:

$ python -m pip install darglint

If we check the format of this file against the Google style guide:

$ darglint -s google main.py
main.py:get_mean:1: DAR101: - collection
main.py:get_mean:1: DAR201: - return

5.3. Discussion 121

https://www.python.org/dev/peps/pep-0257/
https://github.com/terrencepreilly/darglint
https://google.github.io/styleguide/pyguide.html
https://pythonhosted.org/an_example_pypi_project/sphinx.html#function-definitions
https://numpydoc.readthedocs.io/en/latest/format.html

Nashpy Documentation, Release 0.0.40

we get two errors, we can cross reference the error codes DAR101 and DAR201 at https://github.com/terrencepreilly/
darglint#error-codes.

• DAR101: “The docstring is missing a parameter in the definition.”

• DAR201: “The docstring is missing a return from definition.”

Note that our file does have both those things but here darglint is telling us that they do not match with the google style
guide.

If we check the format of this file against the Sphinx style guide:

$ darglint -s sphinx main.py
main.py:get_mean:1: DAR101: - collection
main.py:get_mean:1: DAR201: - return

we get the same two errors.

Running, the file against the Numpy style guide gives:

$ darglint -s numpy main.py
$

No errors are raised as this is indeed written using the Numpy style guide which is also the convention chosen for the
entire Nashpy source code.

Running darglint as part of the test suite

If darglint is installed it will automatically run as part of the flake8 check. For Nashpy this is done as part of the pytest
run which is all configured using tox.

5.3.12 Checking of type hints using mypy

Optional type hints can be added to python code which allows specification of the type of a variable. Type hints were
specified in PEP484.

Type hints are ignored when running the code but can be statically analysed using a various tools:

• Mypy.

• Pyright

Mypy is used for Nashpy.

For example, consider the file main.py:

def get_mean(collection):
"""
Obtain the average of a collection of objects.

Parameters

collection : list

A list of numbers

Returns

(continues on next page)

122 Chapter 5. Contributor documentation

https://github.com/terrencepreilly/darglint#error-codes
https://github.com/terrencepreilly/darglint#error-codes
https://www.python.org/dev/peps/pep-0484/
https://mypy.readthedocs.io/en/stable/introduction.html
https://github.com/Microsoft/pyright
https://mypy.readthedocs.io/en/stable/introduction.html

Nashpy Documentation, Release 0.0.40

(continued from previous page)

float
The mean of the numbers.

"""
return sum(collection) / len(collection)

After installing mypy:

$ python -m pip install mypy

If we check the annotations present in the file:

$ python -m mypy main.py
Success: no issues found in 1 source file

There are no issues because there are no annotations. If the following annotations are added:

from typing import Iterable

def get_mean(collection: Iterable) -> float:
"""
Obtain the average of a collection of objects.

Parameters

collection : Iterable

A list of numbers

Returns

float

The mean of the numbers.
"""
return sum(collection) / len(collection)

We get:

$ python -m mypy main.py
main_with_wrong_types.py:17: error: Argument 1 to "len" has incompatible type
→˓"Iterable[Any]"; expected "Sized"
Found 1 error in 1 file (checked 1 source file)

Mypy has found an error here: the Iterable type does not necessarily have a length. The following modifies this:

def get_mean(collection: list) -> float:
"""
Obtain the average of a collection of objects.

Parameters

collection : list

A list of numbers

(continues on next page)

5.3. Discussion 123

Nashpy Documentation, Release 0.0.40

(continued from previous page)

Returns

float

The mean of the numbers.
"""
return sum(collection) / len(collection)

We get:

$ python -m mypy main.py
Success: no issues found in 1 source file

–ignore-missing-import

In some cases some imported modules cannot be used checked with Mypy, these can be ignored by running the follow-
ing:

$ python -m mypy --ignore-missing-import main.py

Overlap of functionality with darglint

The python library darglint checks the format of the docstrings. This will also use any type annotations and so the type
annotations and the types specified in the docstrings must correspond.

5.3.13 Using sphinx for documentation

TODO

Using sphinx-togglebutton for the questions

TODO

Using matplotlib for plotting directives

The matplotlib library includes a sphinx plugin that allows for plot directives. To enable it, ensure that
"matplotlib.sphinxext.plot_directive" is included in extensions in conf.py.

For example the following will create a plot:

.. plot::

import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(0, 10)
plt.plot(xs, np.cos(xs))

124 Chapter 5. Contributor documentation

Nashpy Documentation, Release 0.0.40

0 2 4 6 8 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

5.3. Discussion 125

Nashpy Documentation, Release 0.0.40

Using mermaid for diagrams

A popular tool for drawing diagrams is mermaid.js. This can be used directly with sphinx. To enable it, ensure that
"sphinxcontrib.mermaid" is included in extensions in conf.py.

For example the following will create a flowchart:

.. mermaid::

graph TD;
A-->B;
A-->C;
B-->D;
C-->D;

5.3.14 Ensuring the code in the documentation is correct with doctests

TODO

5.3.15 Checking for insensitive language with alex

alex is a tool that allows you to identify insensitive and/or inconsiderate language in written prose. The following
description is taken from the project page:

“Whether your own or someone else’s writing, alex helps you find gender favoring, polarizing, race related,
religion inconsiderate, or other unequal phrasing in text.”

As an example consider the following markdown file:

A typical user of Nashpy

He will use it to study games.

If we run alex on it:

$ alex main.md

We get:

$ alex main.md
main.md
3:1-3:3 warning `He` may be insensitive, use `They`, `It` instead he-she retext-
→˓equality

1 warning

Correcting the markdown file to:

A typical user of Nashpy

They will use it to study games.

Running alex now gives:

126 Chapter 5. Contributor documentation

https://mermaid-js.github.io/
https://github.com/get-alex/alex#cli

Nashpy Documentation, Release 0.0.40

$ alex main.md
main.md: no issues found

The above example is quite a clear one, alex assists by identifying errors like this but also more subtle ones.

It is possible to ignore certain checks using a configuration file but as described in the how to guide it is also possible
to annotate the file itself. This is preferred as it makes exceptions explicit.

FAQ

The Frequently asked questions about alex can be found here: https://github.com/get-alex/alex#faq This includes:

Q: This is stupid!

A: Not a question. And yeah, alex isn’t very smart. People are much better at this. But people make
mistakes, and alex is there to help

The Nashpy library uses alex for exactly this reason, it is one of many efforts made to ensure the project is inclusive.

5.3.16 Using Github Actions to check automatically run all checks and publish new
releases

TODO

5.3.17 Hosting documentation on Read The Docs

Read the docs is a web service that builds and hosts documentation. You can read more about the service here: https:
//readthedocs.org

The documentation contained in docs/ is automatically built and can be viewed at https://nashpy.readthedocs.io/en/
stable/.

Versions

The default version (ie when going to https://nashpy.readthedocs.io/) is the stable version which means the last release.

You can view the version of the documentation currently on the main branch by going to: https://nashpy.readthedocs.
io/latest.

Configuration file

Read the docs can have specific settings set in a .readthedocs.yml file. Details on this can be found here: https:
//docs.readthedocs.io/en/stable/config-file/v2.html#packages

One specific setting used by Nashpy is:

python:
version: 3.8
install:
- method: pip
path: .
extra_requirements:
- doc

5.3. Discussion 127

https://github.com/get-alex/alex#configuration
https://github.com/get-alex/alex#faq
https://readthedocs.org
https://readthedocs.org
https://nashpy.readthedocs.io/en/stable/
https://nashpy.readthedocs.io/en/stable/
https://nashpy.readthedocs.io/
https://nashpy.readthedocs.io/latest
https://nashpy.readthedocs.io/latest
https://docs.readthedocs.io/en/stable/config-file/v2.html#packages
https://docs.readthedocs.io/en/stable/config-file/v2.html#packages

Nashpy Documentation, Release 0.0.40

This ensures Read the docs does not look for a requirements.txt file to install the library. Instead it runs
pip install . which uses The pyproject.toml file. It also uses the extra requirements specified by [doc] in the
pyproject.toml file.

A powerful feature offered by Read the docs is that it can build documentation in pull requests.

Building documentation in pull requests

To set this up you need to ensure the following things are done:

1. The repository settings on Read the docs instruct pull requests to be built.

2. The correct web hook is in place on Github.

3. The correct settings of the web hook are done on the Github repository.

To instruct pull requests to be built ensure the following box is ticked in the Advanced settings for your project on Read
the docs:

128 Chapter 5. Contributor documentation

Nashpy Documentation, Release 0.0.40

Setting up the web hooks correctly is described here: https://docs.readthedocs.io/en/latest/pull-requests.html

When done correctly this is what Applications settings should look like:

5.3. Discussion 129

https://docs.readthedocs.io/en/latest/pull-requests.html
https://github.com/settings/applications?o=used-desc

Nashpy Documentation, Release 0.0.40

The final thing to check is the setting on the specific Github repository (under Settings/Webhooks) which should
have the following 4 boxes ticked:

• Branch or tag creation

• Branch or tag deletion

• Pull requests

• Pushes

When done correctly this should look like:

130 Chapter 5. Contributor documentation

Nashpy Documentation, Release 0.0.40

This is described here: https://docs.readthedocs.io/en/latest/webhooks.html#github (although note that ticking the Pull
Requests box is not indicated there).

Reviewing documentation on Pull Requests

If this is all done correctly you will be able to view your documentation during pull requests:

For example here is how the documentation looked for pull request that added this specific page of the documentation:

5.3. Discussion 131

https://docs.readthedocs.io/en/latest/webhooks.html#github

Nashpy Documentation, Release 0.0.40

5.3.18 Ensuring consistent markdown format with mdformat

From the mdformat’s documentation page:

“Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in Mark-
down files. Mdformat is a Unix-style command-line tool as well as a Python library.”

The rationale for using mdformat is the same as the one for using black which is to avoid spending any time thinking
about the formatting of source files.

Examples of choices that mdformat will make:

Hello world

Here is how to write some python code:

print("Hello Nashpy!)

become:

Hello world

Here is how to write some python code:

(continues on next page)

132 Chapter 5. Contributor documentation

https://mdformat.readthedocs.io/en/stable/

Nashpy Documentation, Release 0.0.40

(continued from previous page)

```
print("Hello Nashpy!)
```

5.4 Reference

5.4.1 Contributing Bibliography

This is a collection of various bibliographic items referenced in the contributor documentation.

5.4.2 List of contributors

• @drvinceknight

• @11michalis11

• @asinghgaba

• @katiemcgoldrick

• @volume-on-max

• @theref

• @robert-szeto

• @arwheel

• Computing for Mathematics class of 2023

5.4. Reference 133

https://github.com/drvinceknight
https://github.com/11michalis11
https://github.com/asinghgaba
https://github.com/katiemcgoldrick
https://github.com/volume-on-max
https://github.com/theref
https://github.com/robert-szeto
https://github.com/arwheel

Nashpy Documentation, Release 0.0.40

134 Chapter 5. Contributor documentation

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

135

Nashpy Documentation, Release 0.0.40

136 Chapter 6. Indices and tables

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

137

Nashpy Documentation, Release 0.0.40

138 Chapter 7. Indices and tables

BIBLIOGRAPHY

[Axelrod1980] Axelrod, Robert. “Effective choice in the prisoner’s dilemma.” Journal of conflict resolution 24.1
(1980): 3-25.

[Dantzig2016] Dantzig, George. Linear programming and extensions. Princeton university press, 2016. APA

[Elvio2011] Elvio, Accinelli and Carrera, Edgar. 2011. Evolutionarily Stable Strategies and Replicator Dynamics in
Asymmetric Two-Population Games. 10.1007/978-3-642-11456-4_3.

[Fudenberg1998] Fudenberg, Drew, et al. The theory of learning in games. Vol. 2. MIT press, 1998.

[Harper2017] Harper, Marc, et al. “Reinforcement learning produces dominant strategies for the iterated prisoner’s
dilemma.” PloS one 12.12 (2017): e0188046.

[Hofbauer2002] Hofbauer, Josef, and William H. Sandholm. “On the global convergence of stochastic fictitious play.”
Econometrica 70.6 (2002): 2265-2294.

[Knight2016] Knight, Vincent Anthony, et al. “An open framework for the reproducible study of the iterated prisoner’s
dilemma.” Journal of Open Research Software 4.1 (2016).

[Knight2018] Knight, Vincent, et al. “Evolution reinforces cooperation with the emergence of self-recognition mech-
anisms: An empirical study of strategies in the Moran process for the iterated prisoner’s dilemma.” PloS
one 13.10 (2018): e0204981.

[Komarova2004] Komarova, Natalia L. “Replicator–mutator equation, universality property and population dynamics
of learning.” Journal of theoretical biology 230.2 (2004): 227-239.

[Lemke1964] Lemke, Carlton E., and Joseph T. Howson, Jr. “Equilibrium points of bimatrix games.” Journal of the
Society for Industrial and Applied Mathematics 12.2 (1964): 413-423.

[Maschler2013] Maschler, M., Eilon Solan, and Shmuel Zamir. “Game theory. Translated from the Hebrew by Ziv
Hellman and edited by Mike Borns.” (2013).

[Maynard1974] Smith, J. Maynard. “The theory of games and the evolution of animal conflicts.” Journal of theoretical
biology 47.1 (1974): 209-221.

[McKelvey2016] McKelvey, Richard D., McLennan, Andrew M., and Turocy, Theodore L. (2016). Gambit: Software
Tools for Game Theory, Version 16.0.1. http://www.gambit-project.org.

[Moran1958] Moran, Patrick Alfred Pierce. “Random processes in genetics.” Mathematical proceedings of the cam-
bridge philosophical society. Vol. 54. No. 1. Cambridge University Press, 1958.

[Nasar2011] Nasar, Sylvia. A beautiful mind. Simon and Schuster, 2011. APA

[Nash1950] Nash, John F. “Equilibrium points in n-person games.” Proceedings of the national academy of sciences
36.1 (1950): 48-49.

[Nisan2007] Nisan, Noam, et al., eds. Algorithmic game theory. Vol. 1. Cambridge: Cambridge University Press,
2007.

139

http://www.gambit-project.org

Nashpy Documentation, Release 0.0.40

[Nowak2006] Nowak, Martin A. Evolutionary dynamics: exploring the equations of life. Harvard university press,
2006.

[Ohtsuki2007] Ohtsuki, Hisashi, Jorge M. Pacheco, and Martin A. Nowak. “Evolutionary graph theory: Breaking the
symmetry between interaction and replacement.” Journal of Theoretical Biology 246.4 (2007): 681-694.

[Press2012] Press, William H., and Freeman J. Dyson. “Iterated Prisoner’s Dilemma contains strategies that dominate
any evolutionary opponent.” Proceedings of the National Academy of Sciences 109.26 (2012): 10409-
10413.

[Savani2015] Rahul Savani and Bernhard von Stengel. Game Theory Explorer – Software for the Applied Game The-
orist. Computational Management Science 12, 5-33, 2015

[Vanderbei1998] Vanderbei, Robert J. “Vanderbei, linear programming foundations and extensions.” (1998).

[Webb2007] Webb, James N. Game theory: decisions, interaction and Evolution. Springer Science & Business Media,
2007.

[Ziegler2012] Ziegler, Günter M. Lectures on polytopes. Vol. 152. Springer Science & Business Media, 2012. APA

[vonNeumann1928] von Neumann, J. “Zur theorie der gesellschaftsspiele.” Mathematische annalen 100.1 (1928): 295-
320

[vonStengel2023] von Stengel, Bernhard. “Zero-sum games and linear programming duality.” Mathematics of Opera-
tions Research (2023).

[Procida2021] Daniele Procida. Diátaxis: A Systematic Framework For Technical Documentation Authoring. https:
//diataxis.fr

[Knight2018b] Knight and Campbell, (2018). Nashpy: A Python library for the computation of Nash equilibria. Journal
of Open Source Software, 3(30), 904, https://doi.org/10.21105/joss.00904

140 Bibliography

https://diataxis.fr
https://diataxis.fr
https://doi.org/10.21105/joss.00904

PYTHON MODULE INDEX

n
nashpy, 100
nashpy.algorithms.lemke_howson, 94
nashpy.algorithms.support_enumeration, 91
nashpy.algorithms.vertex_enumeration, 94
nashpy.game, 96
nashpy.learning.fictitious_play, 95

141

Nashpy Documentation, Release 0.0.40

142 Python Module Index

INDEX

A
asymmetric_replicator_dynamics()

(nashpy.game.Game method), 96

F
fictitious_play() (in module

nashpy.learning.fictitious_play), 95
fictitious_play() (nashpy.game.Game method), 96
fixation_probabilities() (nashpy.game.Game

method), 96

G
Game (class in nashpy.game), 96
get_best_response_to_play_count() (in module

nashpy.learning.fictitious_play), 95

I
indifference_strategies() (in module

nashpy.algorithms.support_enumeration),
91

is_best_response() (nashpy.game.Game method), 97
is_ne() (in module nashpy.algorithms.support_enumeration),

91

L
lemke_howson() (in module

nashpy.algorithms.lemke_howson), 94
lemke_howson() (nashpy.game.Game method), 97
lemke_howson_enumeration() (nashpy.game.Game

method), 98
linear_program() (nashpy.game.Game method), 98

M
module

nashpy, 100
nashpy.algorithms.lemke_howson, 94
nashpy.algorithms.support_enumeration, 91
nashpy.algorithms.vertex_enumeration, 94
nashpy.game, 96
nashpy.learning.fictitious_play, 95

moran_process() (nashpy.game.Game method), 98

N
nashpy

module, 100
nashpy.algorithms.lemke_howson

module, 94
nashpy.algorithms.support_enumeration

module, 91
nashpy.algorithms.vertex_enumeration

module, 94
nashpy.game

module, 96
nashpy.learning.fictitious_play

module, 95

O
obey_support() (in module

nashpy.algorithms.support_enumeration),
92

P
potential_support_pairs() (in module

nashpy.algorithms.support_enumeration),
92

powerset() (in module
nashpy.algorithms.support_enumeration),
92

R
replicator_dynamics() (nashpy.game.Game

method), 98

S
solve_indifference() (in module

nashpy.algorithms.support_enumeration),
92

stochastic_fictitious_play()
(nashpy.game.Game method), 99

support_enumeration() (in module
nashpy.algorithms.support_enumeration),
93

support_enumeration() (nashpy.game.Game
method), 99

143

Nashpy Documentation, Release 0.0.40

U
update_play_count() (in module

nashpy.learning.fictitious_play), 95

V
vertex_enumeration() (in module

nashpy.algorithms.vertex_enumeration),
94

vertex_enumeration() (nashpy.game.Game method),
99

144 Index

	Tutorial: building and finding the equilibrium for a game
	Introduction to game theory
	Installing Nashpy
	Creating a game
	Calculating the utility of a pair of strategies
	Computing Nash equilibria
	Learning in games

	How to
	Install Nashpy
	Create a Normal Form Game
	Calculate utilities
	Check if a strategy is a best response
	Use the minimax theorem
	Solve with support enumeration
	Solve with vertex enumeration
	Solve with Lemke Howson
	Use fictitious play
	Use stochastic fictitious play
	Use replicator dynamics
	Use replicator dynamics with mutation
	Use asymmetric replicator dynamics
	Use Moran processes
	Obtain fixation probabilities
	Obtain a repeated game
	Use Moran processes on replacement graph
	Use Moran processes on interaction graph

	Nashpy Game Theory Text book
	Normal Form Games
	Motivating example: Coordination Game
	Definition of Normal Form Game
	Definition of a Zero Sum Game
	Examples of other Normal Form Games
	Prisoners Dilemma
	Hawk Dove Game
	Pigs
	Matching Pennies

	Using Nashpy

	Strategies
	Motivating example: Strategy for Rock Paper Scissors
	Definition of a strategy in a normal form game
	Definition of support of a strategy
	Strategy spaces for Normal form Games
	Calculation of expected utilities
	Linear algebraic calculation of expected utilities
	Using Nashpy

	Best responses
	Motivating example: Best Responses in Matching Pennies
	Definition of a best response in a normal form game
	Generic best responses in 2 by 2 games
	General condition for a best response
	Proof

	Definition of Nash equilibrium
	Using Nashpy

	Zero Sum Games
	Motivating example: changing Rock Paper Scissors
	Optimising worst case outcomes: the min-max and max-min strategies
	Re formulation of the linear program
	The minimax theorem
	Using Nashpy

	Support enumeration
	Motivating example: Coordination Game
	The support enumeration algorithm
	Using Nashpy

	Vertex enumeration
	Discussion

	Extensive Form Games
	Motivating example: A modification of the Coordination Game
	Definition of an Extensive Form Game
	Imperfect information
	Definition of an information set
	Definition of a strategy in an extensive form game
	Equivalence of Extensive and Normal Form Games
	Using Nashpy

	Repeated Games
	Motivating example: Repeated Coordination Game
	Definition of a repeated games
	Strategies in a repeated game
	Equilibria in repeated games
	Using Nashpy

	The Emergence of Cooperation
	Motivating example: can cooperation emerge in a short time frame?
	The General form of the Prisoners Dilemma
	Axelrod’s tournaments
	Using Python

	The Lemke Howson Algorithm
	Discussion

	Degenerate games
	Fictitious play
	Discussion

	Stochastic fictitious play
	Discussion

	Replicator dynamics
	Motivating example: The Hawk Dove Game
	The replicator dynamics equation
	Stability of the replicator dynamics equation
	Evolutionary stable strategies
	The replicator-mutation dynamics equation
	Using Nashpy

	Asymmetric replicator dynamics
	Discussion

	Moran Processes
	Motivating example: The Hawk Dove Game
	The Moran process
	Fitness function on a game
	Selection probabilities on a game

	The Moran process with mutation
	The Moran process with 2 types of individuals
	Fixation probability

	Using Nashpy

	Discussion and code reference
	John Nash
	How does Nashpy relate to Gambit
	Linear Programming Duality
	Definition of a Linear Program
	Definition of the Dual of a Linear Program
	Linear Program Duality Theorem

	Other Python Game theory libraries
	Bibliography
	Source files
	Subpackages
	nash.algorithms package
	Submodules
	nashpy.algorithms.support_enumeration module
	nashpy.algorithms.vertex_enumeration module
	nashpy.algorithms.lemke_howson module

	nash.learning package
	Submodules
	nashpy.learning.fictitious_play module

	Submodules
	nashpy.game module
	Module contents

	Contributor documentation
	Tutorial: make a contribution to the documentation
	Forking the repository
	Cloning the repository
	Creating a branch
	Modifying the documentation
	Checking the modification
	Running the test suite
	Committing the change
	Pushing the change to Github
	Opening a Pull Request
	Making further modifications

	How to
	How to fork the repository
	How to clone the repository
	How to update from upstream
	How to create a branch
	How to branch from a specific branch, tag or commit
	How to create a branch and checkout to it at the same time

	How to create a virtual environment
	How to activate <name>

	How to install the library from source
	How to install an editable version of the library from source

	How to run tests
	How to check for insensitive language
	How to install alex
	How to run alex
	How to ignore some checks

	How to write a docstring
	How to check dosctrings in a module

	How to write a type hint
	How to check type annotations in a module

	How to write tests
	Hypothesis

	How to make a commit
	Commit message style
	Do not use git commit -m "<commit message>"

	How to push changes
	How to open a pull request
	How to format markdown files
	How to install mdformat
	How to format all markdown files
	How to check markdown files

	Discussion
	The code structure of Nashpy
	The directory structure
	The src/ directory
	The tests/ directory
	The docs/ directory
	The CHANGES.md file
	The CITATION.md file
	The LICENSE file
	The README.md file
	The paper.bib and paper.md files
	The pyproject.toml file
	The .readthedocs.yml file
	The setup.cfg file
	The tox.ini file

	The Game class

	Writing clean tests with pytest
	Plugins
	Coverage: pytest-cov
	Flake8: pytest-flake8
	Stochastic effects: pytest-randomly
	Nicer look: pytest-sugar

	Further plugins

	Testing across environments with tox
	Configure all tests
	Test across multiple python versions

	Installing and packaging with flit
	Virtual environments
	Checking code is tested with coverage
	Testing with properties with hypothesis
	Ensuring consistent code style with Black
	Static code analysis with flake8
	Checking the presence of docstrings with interrogate
	Checking the format of docstrings with darglint
	Running darglint as part of the test suite

	Checking of type hints using mypy
	–ignore-missing-import
	Overlap of functionality with darglint

	Using sphinx for documentation
	Using sphinx-togglebutton for the questions
	Using matplotlib for plotting directives
	Using mermaid for diagrams

	Ensuring the code in the documentation is correct with doctests
	Checking for insensitive language with alex
	FAQ

	Using Github Actions to check automatically run all checks and publish new releases
	Hosting documentation on Read The Docs
	Versions
	Configuration file
	Building documentation in pull requests
	Reviewing documentation on Pull Requests

	Ensuring consistent markdown format with mdformat

	Reference
	Contributing Bibliography
	List of contributors

	Indices and tables
	Indices and tables
	Bibliography
	Python Module Index
	Index

