

Welcome to Nashpy’s documentation!

This is a Python library used for the computation of equilibria in 2 player
strategic form games.

	Tutorial: building and finding the equilibrium for a game
	Introduction to game theory

	Installing Nashpy

	Creating a game

	Calculating the utility of a pair of strategies

	Computing Nash equilibria

	Learning in games

	How to
	Install Nashpy

	Create a Normal Form Game

	Calculate utilities

	Check if a strategy is a best response

	Solve with support enumeration

	Solve with vertex enumeration

	Solve with Lemke Howson

	Use fictitious play

	Use stochastic fictitious play

	Use replicator dynamics

	Use asymmetric replicator dynamics

	Use Moran processes

	Obtain fixation probabilities

	Discussion
	Normal Form Games

	Strategies

	Best responses

	Support enumeration

	Vertex enumeration

	Extensive Form Games

	The Lemke Howson Algorithm

	Degenerate games

	Fictitious play

	Stochastic fictitious play

	Replicator dynamics

	Asymmetric replicator dynamics

	Reference
	John Nash

	How does Nashpy relate to Gambit

	Other Python Game theory libraries

	Bibliography

	Source files

	Contributor documentation
	Tutorial: make a contribution to the documentation

	How to

	Discussion

	Reference

	Indices and tables

Indices and tables

	Index

	Module Index

	Search Page

Tutorial: building and finding the equilibrium for a game

Introduction to game theory

Game theory is the study of strategic interactions between rational agents.
This means that it is the study of interactions when the involved
parties try and do what is best from their point of view.

As an example let us consider Rock Paper Scissors [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors]. This is a
common game where two players choose one of 3 options (in game theory we call
these strategies):

	Rock

	Paper

	Scissors

The winner is decided according to the following:

	Rock crushes scissors

	Paper covers Rock

	Scissors cuts paper

We can represent this mathematically using a 3 by 3 matrix:

\[\begin{split}A =
\begin{pmatrix}
 0 & -1 & 1\\
 1 & 0 & -1\\
 -1 & 1 & 0
\end{pmatrix}\end{split}\]

The matrix \(A_{ij}\) shows the utility to the player controlling the rows
when they play the \(i\) th row and their opponent (the column player) plays
the \(j\) th column. For example, if the row player played Scissors (the 3rd
strategy) and the column player played Paper (the 2nd strategy) then the row
player gets: \(A_{32}=1\) because Scissors cuts Paper.

A recommend text book on Game Theory is [Maschler2013].

Installing Nashpy

We are going to study this game using Nashpy, first though we need to install
it. Nasphy requires the following things to be on your computer:

	Python 3.5 or greater;

	Scipy 0.19.0 or greater;

	Numpy 1.12.1 or greater.

Assuming you have those installed, to install Nashpy:

	On Mac OSX or linux open a terminal;

	On Windows open the Command prompt or similar

and type:

$ python -m pip install nashpy

If this does not work, you might not have Python or one of the other
dependencies. You might also have problems due to pip not being
recognised. To overcome these, using the Anaconda [https://www.continuum.io/downloads] distribution of Python
is recommended as it installs straightforwardly on all operating systems and
also includes the libraries needed to run Nashpy.

Creating a game

We can create this game using Nashpy:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> rps = nash.Game(A)
>>> rps
Zero sum game with payoff matrices:

Row player:
[[0 -1 1]
 [1 0 -1]
 [-1 1 0]]

Column player:
[[0 1 -1]
 [-1 0 1]
 [1 -1 0]]

The string representation of the game also contains some information. For
example, it is also showing the matrix that corresponds to the utility of the
column player. In this case that is \(-A\) but that does not always
have to be the case.

We can in fact pass a pair of matrices to the game class to create the same
game:

>>> B = - A
>>> rps = nash.Game(A, B)
>>> rps
Zero sum game with payoff matrices:

Row player:
[[0 -1 1]
 [1 0 -1]
 [-1 1 0]]

Column player:
[[0 1 -1]
 [-1 0 1]
 [1 -1 0]]

We get the exact same game, if passed a single game, Nashpy will assume
that the game is a zero sum game: in other words the utilities of both players
are opposite.

Calculating the utility of a pair of strategies

If the row player played Scissors (the 3rd
strategy) and the column player played Paper (the 2nd strategy) then the row
player gets: \(A_{32}=1\) because Scissors cuts Paper.

A mathematical approach to representing a strategy is to consider a vector of
the size: the number of strategies. For example \(\sigma_r=(0, 0, 1)\) is
the row strategy where the row player always plays their third strategy.
Similarly \(\sigma_c=(0, 1, 0)\) is the strategy for the column player where
they always play their second strategy.

When we represent strategies like this we can get the utility to the row player
using the following linear algebraic expression:

\[\sigma_r A \sigma_c^T\]

Similarly, if \(B\) is the utility to the column player their utility is
given by:

\[\sigma_r B \sigma_c^T\]

We can use Nashpy to find these utilities:

>>> sigma_r = [0, 0, 1]
>>> sigma_c = [0, 1, 0]
>>> rps[sigma_r, sigma_c]
array([1, -1])

Players can choose to play randomly, in which case the utility
corresponds to the long term average. This is where our representation of
strategies and utility calculations becomes particularly useful. For example,
let us assume the column player decides to play Rock and Paper “randomly”. This
corresponds to \(\sigma_c=(1/2, 1/2, 0)\):

>>> sigma_c = [1 / 2, 1 / 2, 0]
>>> rps[sigma_r, sigma_c]
array([0., 0.])

The row player might then decide to change their strategy and “randomly” play
Paper and Scissors:

>>> sigma_r = [0, 1 / 2, 1 / 2]
>>> rps[sigma_r, sigma_c]
array([0.25, -0.25])

The column player would then probably deviate once more. Whether or not their is
a pair of strategies for both players at which they both no longer have a reason
to move is going to be answered in the next section.

Computing Nash equilibria

Nash equilibria is (in two player games) a pair of strategies at which both
players do not have an incentive to deviate. We can find these using
Nashpy:

>>> eqs = rps.support_enumeration()
>>> list(eqs)
[(array([0.333..., 0.333..., 0.333...]), array([0.333..., 0.333..., 0.333...]))]

Nash equilibria is an important concept as it allows to gain an initial
understanding of emergent behaviour in complex systems.

Learning in games

Nash equilibria are not always observed during non cooperative play: they
correspond to strategies at which no play has an incentive to move but that does
not necessarily imply that players can arrive at that equilibria naturally.

We can illustrate this using Nashpy:

>>> import numpy as np
>>> iterations = 100
>>> np.random.seed(0)
>>> play_counts = rps.fictitious_play(iterations=iterations)
>>> for row_play_count, column_play_count in play_counts:
... print(row_play_count, column_play_count)
[0 0 0] [0 0 0]
[1. 0. 0.] [0. 1. 0.]
...
[28. 39. 32.] [37. 26. 36.]
[29. 39. 32.] [37. 26. 37.]

Over time we can see the behaviour emerge, as the play counts can be normalised
to give strategy vectors. Note that these will not always converge.

How to

How to:

	Install Nashpy

	Create a Normal Form Game

	Calculate utilities

	Check if a strategy is a best response

	Solve with support enumeration

	Solve with vertex enumeration

	Solve with Lemke Howson

	Use fictitious play

	Use stochastic fictitious play

	Use replicator dynamics

	Use asymmetric replicator dynamics

	Use Moran processes

	Obtain fixation probabilities

Install Nashpy

Nashpy currently requires Python 3.5 or above. To install from the
Python Package index (PyPi) run the following command:

$ python -m pip install nashpy

To install a development version from source:

$ git clone https://github.com/drvinceknight/Nashpy.git
$ cd nashpy
$ python -m pip install flit
$ python -m flit install --symlink

Create a Normal Form Game

A game in Nashpy is created by passing 1 or 2 matrices to the
nash.Game class. Here is the zero sum game Matching Pennies:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> matching_pennies
Zero sum game with payoff matrices:

Row player:
[[1 -1]
 [-1 1]]

Column player:
[[-1 1]
 [1 -1]]

Here is the non zero sum game Prisoners Dilemma:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)
>>> prisoners_dilemma
Bi matrix game with payoff matrices:

Row player:
[[3 0]
 [5 1]]

Column player:
[[3 5]
 [0 1]]

Calculate utilities

A game can be passed a pair of Strategies to return the
utilities. Let us create a game to illustrate this:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)

The utility for both players when they both play their first action:

>>> sigma_r = np.array([1, 0])
>>> sigma_c = np.array([1, 0])
>>> prisoners_dilemma[sigma_r, sigma_c]
array([3, 3])

The utility to both players when they play uniformly randomly across both their
actions:

>>> sigma_r = np.array([1 / 2, 1 / 2])
>>> sigma_c = np.array([1 / 2, 1 / 2])
>>> prisoners_dilemma[sigma_r, sigma_c]
array([2.25, 2.25])

Check if a strategy is a best response

A game can be passed a pair of Strategies to check if they are
best responses to each other.
Let us create a game to illustrate this:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)

The is_best_response method returns a pair of booleans. In this
instance, the row player strategy is a best response to the column player’s but
not vice versa:

>>> sigma_r = np.array([0, 1])
>>> sigma_c = np.array([1, 0])
>>> prisoners_dilemma.is_best_response(sigma_r, sigma_c)
(True, False)

Solve with support enumeration

One of the algorithms implemented in Nashpy is called
support-enumeration, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)

This support_enumeration method returns a generator of all the
equilibria:

>>> equilibria = matching_pennies.support_enumeration()
>>> for eq in equilibria:
... print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))

Solve with vertex enumeration

One of the algorithms implemented in Nashpy is called
Vertex enumeration, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)

This vertex_enumeration method returns a generator of all the
equilibria:

>>> equilibria = matching_pennies.vertex_enumeration()
>>> for eq in equilibria:
... print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))

Solve with Lemke Howson

One of the algorithms implemented in Nashpy is The Lemke Howson Algorithm. This
algorithm does not return all equilibria and takes an input argument:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> matching_pennies.lemke_howson(initial_dropped_label=0)
(array([0.5, 0.5]), array([0.5, 0.5]))

The initial_dropped_label is an integer between 0 and
sum(A.shape) - 1. To iterate over all possible labels use the
lemke_howson_enumeration which returns a generator:

>>> equilibria = matching_pennies.lemke_howson_enumeration()
>>> for eq in equilibria:
... print(eq)
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))
(array([0.5, 0.5]), array([0.5, 0.5]))

Note that this algorithm is not guaranteed to find all equilibria but is
an efficient way of finding an equilibrium.

Use fictitious play

One of the learning algorithms implemented in Nashpy is called
Fictitious play, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [0, 2]])
>>> B = np.array([[2, 0], [1, 3]])
>>> game = nash.Game(A, B)

The fictitious_play method returns a generator of a given collection of
learning steps:

>>> np.random.seed(0)
>>> iterations = 500
>>> play_counts = game.fictitious_play(iterations=iterations)
>>> for row_play_counts, column_play_counts in play_counts:
... print(row_play_counts, column_play_counts)
[0 0] [0 0]
[1. 0.] [0. 1.]
...
[498. 1.] [497. 2.]
[499. 1.] [498. 2.]

Note that this process is stochastic:

>>> np.random.seed(1)
>>> play_counts = game.fictitious_play(iterations=iterations)
>>> for row_play_counts, column_play_counts in play_counts:
... print(row_play_counts, column_play_counts)
[0 0] [0 0]
[0. 1.] [0. 1.]
...
[0. 499.] [0. 499.]
[0. 500.] [0. 500.]

It is also possible to pass a play_counts variable to give a starting
point for the algorithm:

>>> np.random.seed(1)
>>> play_counts = (np.array([0., 500.]), np.array([0., 500.]))
>>> play_counts = game.fictitious_play(iterations=iterations, play_counts=play_counts)
>>> for row_play_counts, column_play_counts in play_counts:
... print(row_play_counts, column_play_counts)
[0. 500.] [0. 500.]
[0. 501.] [0. 501.]
...
[0. 999.] [0. 999.]
[0. 1000.] [0. 1000.]

Use stochastic fictitious play

One of the learning algorithms implemented in Nashpy is called
Stochastic fictitious play, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [0, 2]])
>>> B = np.array([[2, 0], [1, 3]])
>>> game = nash.Game(A, B)

The stochastic_fictitious_play method returns a generator of a given collection of
learning steps, comprising of the play counts and the mixed strategy of each player:

>>> np.random.seed(0)
>>> iterations = 500
>>> play_counts_and_distributions = game.stochastic_fictitious_play(iterations=iterations)
>>> for play_counts, distributions in play_counts_and_distributions:
... row_play_counts, column_play_counts = play_counts
... row_distributions, column_distributions = distributions
... print(row_play_counts, column_play_counts, row_distributions, column_distributions)
[0 0] [0 0] None None
[1. 0.] [0. 1.] [9.99953841e-01 4.61594628e-05] [0.501447 0.498553]
...
[498. 1.] [497. 2.] [1.00000000e+00 1.07557011e-13] [9.99999998e-01 2.32299935e-09]
[499. 1.] [498. 2.] [1.00000000e+00 1.17304491e-13] [9.99999998e-01 2.18403537e-09]

Note that this process is stochastic:

>>> np.random.seed(1)
>>> play_counts_and_distributions = game.stochastic_fictitious_play(iterations=iterations)
>>> for play_counts, distributions in play_counts_and_distributions:
... row_play_counts, column_play_counts = play_counts
... row_distributions, column_distributions = distributions
... print(row_play_counts, column_play_counts)
[0 0] [0 0]
[1. 0.] [1. 0.]
...
[499. 0.] [499. 0.]
[500. 0.] [500. 0.]

It is also possible to pass a play_counts variable to give a starting
point for the algorithm:

>>> np.random.seed(0)
>>> play_counts = (np.array([0., 500.]), np.array([0., 500.]))
>>> play_counts_and_distributions = game.stochastic_fictitious_play(iterations=iterations, play_counts=play_counts)
>>> for play_counts, distributions in play_counts_and_distributions:
... row_play_counts, column_play_counts = play_counts
... row_distributions, column_distributions = distributions
... print(row_play_counts, column_play_counts)
...
[0. 500.] [0. 500.]
[0. 501.] [0. 501.]
...
[0. 999.] [0. 999.]
[0. 1000.] [0. 1000.]

A value of etha and epsilon_bar can be passed.
See the Stochastic fictitious play reference section for more information. The default values for etha and epsilon bar are
\(10^-1\) and \(10^-2\) respectively:

>>> np.random.seed(0)
>>> etha = 10**-2
>>> epsilon_bar = 10**-3
>>> play_counts_and_distributions = game.stochastic_fictitious_play(iterations=iterations, etha=etha, epsilon_bar=epsilon_bar)
>>> for play_counts, distributions in play_counts_and_distributions:
... row_play_counts, column_play_counts = play_counts
... row_distributions, column_distributions = distributions
... print(row_play_counts, column_play_counts)
...
[0 0] [0 0]
[1. 0.] [0. 1.]
...
[498. 1.] [497. 2.]
[499. 1.] [498. 2.]

Use replicator dynamics

One of the learning algorithms implemented in Nashpy is called
Replicator dynamics, this is implemented as a method on the Game
class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 2], [4, 2]])
>>> game = nash.Game(A)

The replicator_dynamics method returns the strategies of the row player
over time:

>>> game.replicator_dynamics()
array([[0.5 , 0.5],
 [0.49875032, 0.50124968],
 [0.49750377, 0.50249623],
...
 [0.10199196, 0.89800804],
 [0.10189853, 0.89810147],
 [0.10180527, 0.89819473]])

It is also possible to pass a y0 variable in order to assign a starting
strategy. Otherwise the probability is divided equally amongst all possible
actions. Passing a timepoints variable gives the algorithm a sequence of
timepoints over which to calculate the strategies:

>>> y0 = np.array([0.9, 0.1])
>>> timepoints = np.linspace(0, 10, 1000)
>>> game.replicator_dynamics(y0=y0, timepoints=timepoints)
array([[0.9 , 0.1],
 [0.89918663, 0.10081337],
 [0.89836814, 0.10163186],
...
 [0.14109126, 0.85890874],
 [0.1409203 , 0.8590797],
 [0.14074972, 0.85925028]])

Use asymmetric replicator dynamics

This algorithm that is implemented in Nashpy is called
Asymmetric replicator dynamics and is implemented as a method on the
Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 2], [4, 2]])
>>> B = np.array([[1, 3], [2, 4]])
>>> game = nash.Game(A, B)

The asymmetric_replicator_dynamics method returns the strategies of both
the row player and the column player over time:

>>> xs, ys = game.asymmetric_replicator_dynamics()
>>> xs
array([[0.5 , 0.5],
 [0.49875..., 0.50124...],
 [0.49752..., 0.50247...],
 ...,
 [0.41421..., 0.58578...],
 [0.41421..., 0.58578...],
 [0.41421..., 0.58578...]])
>>> ys
array([[5.00000...e-01, 5.00000...e-01],
 [4.94995...e-01, 5.05004...e-01],
 [4.89991...e-01, 5.10008...e-01],
 ...,
 [2.28749...e-09, 9.99999...e-01],
 [2.24298...e-09, 9.99999...e-01],
 [2.19926...e-09, 9.99999...e-01]])

It is also possible to pass x0 and y0 arguments to assign the
initial strategy to be played. Otherwise the probability is divided equally
amongst all possible actions for both x0 and y0. Additionally, a
timepoints argument may be passed that gives the algorithm a sequence of
timepoints over which to calculate the strategies.

>>> x0 = np.array([0.4, 0.6])
>>> y0 = np.array([0.9, 0.1])
>>> timepoints = np.linspace(0, 10, 1000)
>>> xs, ys = game.asymmetric_replicator_dynamics(x0=x0, y0=y0, timepoints=timepoints)
>>> xs
array([[0.4 , 0.6],
 [0.39784..., 0.60215...],
 [0.39569..., 0.60430...],
 ...,
 [0.17411..., 0.82588...],
 [0.17411..., 0.82588...],
 [0.17411..., 0.82588...]])
>>> ys
array([[9.00000...e-01, 1.00000...e-01],
 [8.98183...e-01, 1.01816...e-01],
 [8.96338...e-01, 1.03661...e-01],
 ...,
 [1.86696...e-08, 9.99999...e-01],
 [1.82868...e-08, 9.99999...e-01],
 [1.79139...e-08, 9.99999...e-01]])

Use Moran processes

Moran processes are implemented in Nashpy as a method on the
Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 2]])
>>> game = nash.Game(A)

The moran_process method returns a generator of a given collection of
generations:

>>> np.random.seed(0)
>>> generations = game.moran_process(initial_population=(0, 0, 1))
>>> for population in generations:
... print(population)
[0 0 1]
[0 1 1]
[0 1 1]
...
[0 1 1]
[1 1 1]

Note that this process is stochastic:

>>> np.random.seed(2)
>>> generations = game.moran_process(initial_population=(0, 0, 1))
>>> for population in generations:
... print(population)
[0 0 1]
[0 0 1]
[0 0 0]

Currently, only positive valued matrices are supported:

>>> A = np.array([[3, 0], [1, 2]])
>>> game = nash.Game(A)
>>> generations = game.moran_process(initial_population=(0, 0, 1))
>>> for population in generations:
... print(population)
Traceback (most recent call last):
 ...
ValueError: Only positive valued payoff matrices are currently supported

Obtain fixation probabilities

Using the implemented Moran process <how-to-use-moran_process> the fixation
probabilities can be approximated using a method on the Game class:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 2]])
>>> game = nash.Game(A)

The fixation method returns an array with the fixation probabilities of
each strategy given the initial population:

>>> np.random.seed(0)
>>> probabilities = game.fixation_probabilities(initial_population=(0, 1, 1, 1), repetitions=200)
>>> probabilities
array([0.235, 0.765])

This above shows that approximately (estimated over 200 iterations) 23.5 % of
the time the first strategy will take over a population with a total of 4
individuals (when the initial population begins with 3 individuals of the other
type).

Discussion

	Normal Form Games
	Motivating example: Coordination Game

	Definition of Normal Form Game

	Definition of a Zero Sum Game

	Examples of other Normal Form Games

	Using Nashpy

	Strategies
	Motivating example: Strategy for Rock Paper Scissors

	Definition of a strategy in a normal form game

	Definition of support of a strategy

	Strategy spaces for Normal form Games

	Calculation of expected utilities

	Linear algebraic calculation of expected utilities

	Using Nashpy

	Best responses
	Motivating example: Best Responses in Matching Pennies

	Definition of a best response in a normal form game

	Generic best responses in 2 by 2 games

	General condition for a best response

	Definition of Nash equilibrium

	Using Nashpy

	Support enumeration
	Motivating example: Coordination Game

	The support enumeration algorithm

	Using Nashpy

	Vertex enumeration
	Discussion

	Extensive Form Games
	Motivating example: A modification of the Coordination Game

	Definition of an Extensive Form Game

	Imperfect information

	Definition of an information set

	Definition of a strategy in an extensive form game

	Equivalence of Extensive and Normal Form Games

	Using Nashpy

	The Lemke Howson Algorithm
	Discussion

	Degenerate games

	Fictitious play
	Discussion

	Stochastic fictitious play
	Discussion

	Replicator dynamics
	Discussion

	Asymmetric replicator dynamics
	Discussion

Normal Form Games

Motivating example: Coordination Game

Game theory is the study of interactive decision making. One example of this is
the following situation:

Two friends must decide what movie to watch at the cinema. Alice would like
to watch a sport movie and Bob would like to watch a comedy. Importantly,
they would both rather spend their evening together than apart.

To quantify this mathematically, numeric values are associated to the 4
possible outcomes:

	Alice watches a sport movie, Bob watches a comedy: Alice receives a utility
of 1 and Bob a utility of 1.

	Alice watches a comedy, Bob watches a sport movie: Alice receives a utility
of 0 and Bob a utility of 0.

	Alice and Bob both watch a sport movie: Alice receives a utility of 3 and Bob
a utility of 2.

	Alice and Bob both watch a comedy: Alice receives a utility of 2 and Bob
a utility of 3.

This particular example will be
represented using two matrices.

\(A\) will represent the utilities of Alice:

\[\begin{split}A = \begin{pmatrix}
3 & 1\\
0 & 2
\end{pmatrix}\end{split}\]

\(B\) will represent the utilities of Bob

\[\begin{split}B = \begin{pmatrix}
2 & 1\\
0 & 3
\end{pmatrix}\end{split}\]

Alice is referred to as the row player and Bob as the column player:

	The row player chooses which row of the matrices the player will gain their
utilities.

	The column player chooses which column of the matrices the player will gain
their utilities.

This representation of the strategic interaction between Alice and Bob is called
a Normal Form Game

Definition of Normal Form Game

An \(N\) player normal form game consists of:

	A finite set of \(N\) players.

	Action set for the players: \(\{\mathcal{A}_1, \mathcal{A}_2, \dots \mathcal{A}_N\}\)

	Payoff functions for the players: \(u_i : \mathcal{A}_1 \times \mathcal{A}_2 \dots \times \mathcal{A}_N \to \mathbb{R}\)

Question

For the Coordination game:

	What is the finite set of players?

	What are the action sets?

	What are the payoff functions?

Answer

	The two players are Alice and Bob (\(N=2\)).

	The action sets are: \(\mathcal{A}_1=\mathcal{A}_2=\{\text{Sport}, \text{Comedy}\}\)

	The payoff functions are given by the matrices \(A, B\) where the
first row or column corresponds to \(\text{Sport}\) and the second
row or column corresponds to \(\text{Comedy}\).

\[u_1(\mathcal{a}_1, \mathcal{a}_2) = A_{\mathcal{a}_1, \mathcal{a}_2} \qquad
u_2(\mathcal{a}_1, \mathcal{a}_2) = B_{\mathcal{a}_1, \mathcal{a}_2}\]

where \(\mathcal{a}_1\in \mathcal{A}_1\) and \(\mathcal{a}_2\in
\mathcal{A}_2\).

Definition of a Zero Sum Game

A two player normal form game with payoff matrices \(A, B\) is called zero
sum if and only if:

\[A = -B\]

Question

Is the Coordination game zero sum?

Answer

\(A\ne -B\) so the Coordination game is not Zero sum.

Examples of other Normal Form Games

Prisoners Dilemma

Assume two thieves have been caught by the police and separated for questioning.
If both thieves cooperate and do not divulge any information they will each get
a short sentence (with a utility value of 3). If one defects they are offered a
deal (utility value of 5) while the other thief will get a long sentence
(utility value of 0). If they both defect they both get a medium length sentence
(utility value of 1).

Question

For the Prisoners Dilemma

	What is the finite set of players?

	What are the action sets?

	What are the payoff functions?

	Is the game zero sum?

Answer

	The two players are the two thiefs (\(N=2\)).

	The action sets are: \(\mathcal{A}_1=\mathcal{A}_2=\{\text{Cooperate}, \text{Defect}\}\)

	The payoff functions are given by the matrices \(A, B\) where the
first row or column corresponds to \(\text{Cooperate}\) and the second
row or column corresponds to \(\text{Defect}\).

\[\begin{split}A = \begin{pmatrix}
3 & 0\\
5 & 1
\end{pmatrix}
\qquad
B = \begin{pmatrix}
3 & 5\\
0 & 1
\end{pmatrix}\end{split}\]

\[u_1(\mathcal{a}_1, \mathcal{a}_2) = A_{\mathcal{a}_1, \mathcal{a}_2} \qquad
u_2(\mathcal{a}_1, \mathcal{a}_2) = B_{\mathcal{a}_1, \mathcal{a}_2}\]

where \(\mathcal{a}_1\in \mathcal{A}_1\) and \(\mathcal{a}_2\in
\mathcal{A}_2\).

	The game is not Zero sum as \(A \ne -B\).

Hawk Dove Game

Suppose two birds of prey must share a limited resource. The birds can act like
a hawk or a dove. Hawks always act aggressively over the resource to the point of
exterminating another hawk (both hawks get a utility value of 0) and/or take a
majority of the resource from a dove (the hawk gets a utility value of 3 and the
dove a utility value of 1). Two doves can share the resource (both getting a
utility value of 2).

Question

For the Hawk Dove Game

	What is the finite set of players?

	What are the action sets?

	What are the payoff functions?

	Is the game zero sum?

Answer

	The two players are two birds \(N=2\).

	The action sets are: \(\mathcal{A}_1=\mathcal{A}_2=\{\text{Hawk}, \text{Dove}\}\)

	The payoff functions are given by the matrices \(A, B\) where the
first row or column corresponds to \(\text{Hawk}\) and the second
row or column corresponds to \(\text{Dove}\).

\[\begin{split}A = \begin{pmatrix}
0 & 3\\
1 & 2
\end{pmatrix}
\qquad
B = \begin{pmatrix}
0 & 1\\
3 & 2
\end{pmatrix}\end{split}\]

\[u_1(\mathcal{a}_1, \mathcal{a}_2) = A_{\mathcal{a}_1, \mathcal{a}_2} \qquad
u_2(\mathcal{a}_1, \mathcal{a}_2) = B_{\mathcal{a}_1, \mathcal{a}_2}\]

where \(\mathcal{a}_1\in \mathcal{A}_1\) and \(\mathcal{a}_2\in
\mathcal{A}_2\).

	The game is not Zero sum as \(A \ne -B\).

Pigs

Consider two pigs. One dominant pig and one subservient pig. These pigs share a
pen. There is a lever in the pen that delivers food but if either pig pushes the
lever it will take them a little while to get to the food.

	If the dominant pig pushes the lever, the subservient pig has some time to eat
most of the food before being pushed out of the way. The dominant pig gets a
utility value of 2 and the subservient pig gets a utility value of 3.

	If the subservient pig pushes the lever, the dominant pig will eat all the
food. The dominant pig gets a utility value of 6 and the subservient pig gets
a utility value of -1.

	If both pigs push the lever, the subservient pig will a small amount of the
food. The dominant pig gets a utility value of 4 and the subservient pig gets
a utility value of 2.

	If both pigs do not push the lever they both get a utility value of 0.

Question

For the Pigs Game

	What is the finite set of players?

	What are the action sets?

	What are the payoff functions?

	Is the game zero sum?

Answer

	The two players are dominant and a subservient pig \(N=2\).

	The action sets are: \(\mathcal{A}_1=\mathcal{A}_2=\{\text{Push}, \text{Do not push}\}\)

	The payoff functions are given by the matrices \(A, B\) where the
first row or column corresponds to \(\text{Push}\) and the second
row or column corresponds to \(\text{Do not push}\).

\[\begin{split}A = \begin{pmatrix}
4 & 2\\
6 & 0
\end{pmatrix}
\qquad
B = \begin{pmatrix}
2 & 3\\
-1 & 0
\end{pmatrix}\end{split}\]

\[u_1(\mathcal{a}_1, \mathcal{a}_2) = A_{\mathcal{a}_1, \mathcal{a}_2} \qquad
u_2(\mathcal{a}_1, \mathcal{a}_2) = B_{\mathcal{a}_1, \mathcal{a}_2}\]

where \(\mathcal{a}_1\in \mathcal{A}_1\) and \(\mathcal{a}_2\in
\mathcal{A}_2\).

	The game is not Zero sum as \(A \ne -B\).

Matching Pennies

Consider two players who can choose to display a coin either Heads facing up or
Tails facing up. If both players show the same face then player 1 wins, if not
then player 2 wins. Winning corresponds to a numeric value of 1 and losing a
numeric value of -1.

Question

For the Matching Pennies game:

	What is the finite set of players?

	What are the action sets?

	What are the payoff functions?

	Is the game zero sum?

Answer

	There are two players \(N=2\).

	The action sets are: \(\mathcal{A}_1=\mathcal{A}_2=\{\text{Heads}, \text{Tails}\}\)

	The payoff functions are given by the matrices \(A, B\) where the
first row or column corresponds to \(\text{Heads}\) and the second
row or column corresponds to \(\text{Tails}\).

\[\begin{split}A = \begin{pmatrix}
1 & -1\\
-1 & 1
\end{pmatrix}
\qquad
B = \begin{pmatrix}
-1 & 1\\
1 & -1
\end{pmatrix}\end{split}\]

\[u_1(\mathcal{a}_1, \mathcal{a}_2) = A_{\mathcal{a}_1, \mathcal{a}_2} \qquad
u_2(\mathcal{a}_1, \mathcal{a}_2) = B_{\mathcal{a}_1, \mathcal{a}_2}\]

where \(\mathcal{a}_1\in \mathcal{A}_1\) and \(\mathcal{a}_2\in
\mathcal{A}_2\).

	The game is Zero sum as \(A = -B\).

Using Nashpy

See Create a Normal Form Game for guidance of how to use Nashpy to
create a Normal form game.

Strategies

Motivating example: Strategy for Rock Paper Scissors

The game of Rock Paper Scissors is a common parlour game between two players who
pick 1 of 3 options simultaneously:

	Rock which beats Scissors;

	Paper which beats Rock;

	Scissors which beats Paper

Thus, this corresponds to a Normal Form Game with:

	Two players (\(N=2\)).

	The action sets are: \(\mathcal{A}_1=\mathcal{A}_2=\{\text{Rock}, \text{Paper}, \text{Scissors}\}\)

	The payoff functions are given by the matrices \(A, B\) where the
first row or column corresponds to \(\text{Rock}\), the second to
\(\text{Paper}\) and the third to \(\text{Scissors}\).

\[\begin{split}A = \begin{pmatrix}
0 & -1 & 1 \\
1 & 0 & -1\\
-1 & 1 & 0\\
\end{pmatrix}\end{split}\]

\[\begin{split}B = - A = \begin{pmatrix}
0 & 1 & -1 \\
-1 & 0 & 1\\
1 & -1 & 0\\
\end{pmatrix}\end{split}\]

If we consider two players, assume the row player always chooses
\(\text{Paper}\) and the column player randomly chooses from
\(\text{Rock}\) and \(\text{Paper}\) (with equal probability) what is
the expected outcome of any one game between them?

	The expected score of the row player will be: \(-1 \times 1/2 + 0 \times 1/2 = -1/2\).

	The expected score of the column player will be: \(1 \times 1/2 + 0 \times 1/2 = 1/2\).

In Game theoretic terms, the behaviours described above are referred to as
strategies. Strategies map information to actions. In this particular case,
the only available information is the game itself and the actions are
\(\mathcal{A}_1=\mathcal{A}_2\).

Definition of a strategy in a normal form game

A strategy for a player with action set \(\mathcal{A}\) is a probability
distribution over elements of \(\mathcal{A}\).

Typically a strategy is denoted by \(\sigma \in [0, 1]^{|\mathcal{A}|}_{\mathbb{R}}\) so that:

\[\sum_{i=1}^{\mathcal{A}}\sigma_i = 1\]

Question

For Rock Papoer Scissors:

	What is the strategy \(\sigma_r\) that corresponds to the row player’s
behaviour of always choosing \(\text{Paper}\)?

	What is the strategy \(\sigma_c\) that corresponds to the column
player’s behaviour of always randomly choosing between
\(\text{Rock}\) and \(\text{Paper}\)?

Answer

	\(\sigma_r = (0, 1, 0)\)

	\(\sigma_c = (1 / 2, 1 / 2, 0)\)

Definition of support of a strategy

For a given strategy \(\sigma\), the support of \(\sigma\):
\(\mathcal{S}(\sigma)\) is the set of actions \(i\in\mathcal{A}\) for
which \(\sigma_i > 0\).

Question

For the following strategies \(\sigma\) obtain
\(\mathcal{S}(\sigma)\):

	\(\sigma = (1, 0, 0)\)

	\(\sigma = (1/3, 1/3, 1/3)\)

	\(\sigma = (2/5, 0, 3/5)\)

Answer

	\(\mathcal{S}(\sigma) = \{1\}\)

	\(\mathcal{S}(\sigma) = \{1, 2, 3\}\)

	\(\mathcal{S}(\sigma) = \{1, 3\}\)

Note here that as no specific action sets are given the integers are used.

Strategy spaces for Normal form Games

Given a set of actions \(\mathcal{A}\) the space of all strategies
\(\mathcal{S}\) is defined as:

\[\mathcal{S} = \left\{\sigma \in [0, 1]^{|\mathcal{A}|}_{\mathbb{R}}\;\left|\; \sum_{i=1}^{\mathcal{A}}\sigma_i = 1\right.\right\}\]

Calculation of expected utilities

Considering a game \((A, B) \in \mathbb{R} ^{(m\times n) ^ 2}\), if
\(\sigma_r\) and \(\sigma_c\) are the strategies for the row/column
player, the expected utilities are:

	For the row player: \(u_{r}(\sigma_r, \sigma_c) = \sum_{i=1}^m\sum_{j=1}^nA_{ij}\sigma_{r_i}\sigma_{c_j}\)

	For the column player: \(u_{c}(\sigma_r, \sigma_c) = \sum_{i=1}^m\sum_{j=1}^nB_{ij}\sigma_{r_i}\sigma_{c_j}\)

This corresponds to taking the expectation over the probability distributions
\(\sigma_r\) and \(\sigma_c\).

Question

For the Rock Papoer Scissors:

What are the expected utilities to both players if \(\sigma_r=(1/3, 0, 2/3)\) and \(\sigma_c=(1/3, 1/3, 1/3)\).

Answer

\[\begin{split}\begin{align}
u_r(\sigma_r, \sigma_c) = & 1/3(1/3 \times 0 + 1/3 \times -1 + 1/3 \times 1) \\
 & + 0(1/3 \times 1 + 1/3 \times 0 + 1/3 \times -1) \\
 & + 2/3(1/3 \times -1 + 1/3 \times 1 + 1/3 \times 0) \\
 = & 0
\end{align}\end{split}\]

\[\begin{split}\begin{align}
u_c(\sigma_r, \sigma_c) = & 1/3(1/3 \times 0 + 1/3 \times 1 + 1/3 \times -1) \\
 & + 0(1/3 \times -1 + 1/3 \times 0 + 1/3 \times 1) \\
 & + 2/3(1/3 \times 1 + 1/3 \times -1 + 1/3 \times 0) \\
 = & 0
\end{align}\end{split}\]

Linear algebraic calculation of expected utilities

Given a game \((A, B) \in \mathbb{R} ^{(m\times n) ^ 2}\), considering
\(\sigma_r\) and \(\sigma_c\) as vectors in \(\mathbb{R}^m\) and
\(\mathbb{R}^n\). The expected utilities can be written as the matrix vector
product:

	For the row player: \(u_{r}(\sigma_r, \sigma_c) = \sigma_r A \sigma_c^T\)

	For the column player: \(u_{c}(\sigma_r, \sigma_c) = \sigma_r B \sigma_c^T\)

Question

For Rock Paper Scissors:

Calculate the expected utilities to both players if \(\sigma_r=(1/3, 0, 2/3)\)
and \(\sigma_c=(1/3, 1/3, 1/3)\) using a linear algebraic approach.

Answer

\[\begin{split}u_r(\sigma_r, \sigma_c) = (1/3, 0, 2/3) A \begin{pmatrix}1/3 \\ 1/3 \\ 1/3\end{pmatrix} = (-2/3, 1/3, 1/3)\begin{pmatrix}1/3 \\ 1/3 \\ 1/3\end{pmatrix} = 0\end{split}\]

\[\begin{split}u_c(\sigma_r, \sigma_c) = (1/3, 0, 2/3) B \begin{pmatrix}1/3 \\ 1/3 \\ 1/3\end{pmatrix} = (2/3, -1/3, -1/3)\begin{pmatrix}1/3 \\ 1/3 \\ 1/3\end{pmatrix} = 0\end{split}\]

Using Nashpy

See Calculate utilities for guidance of how to use Nashpy to
calculate utilities.

Best responses

Motivating example: Best Responses in Matching Pennies

Considering the game Matching Pennies:

\[\begin{split}A = \begin{pmatrix}
1 & -1\\
-1 & 1
\end{pmatrix}
\qquad
B = \begin{pmatrix}
-1 & 1\\
1 & -1
\end{pmatrix}\end{split}\]

If the row player knows that the column player is playing the strategy \(\sigma_c=(0, 1)\) the utility of the row player
is maximised by playing \(\sigma_r=(0, 1)\).

In this case \(\sigma_r\) is referred to as a best response to
\(\sigma_c\).

Alternatively, if the column player knows that the row player is playing the
strategy \(\sigma_r=(0, 1)\) the column
player’s best response is \(\sigma_c=(1, 0)\).

Definition of a best response in a normal form game

In a two player game \((A,B)\in{\mathbb{R}^{m\times n}}^2\) a strategy
\(\sigma_r^*\) of the row player is a best response to a column players’
strategy \(\sigma_c\) if and only if:

\[\sigma_r^*=\text{argmax}_{\sigma_r\in \mathcal{S}_1}\sigma_rA\sigma_c^T.\]

Where \(\mathcal{S}_1\) denotes the space of all
strategies for the first
player.

Similarly a mixed strategy \(\sigma_c^*\) of the column player is a best
response to a row players’ strategy \(\sigma_r\) if and only if:

\[\sigma_c^*=\text{argmax}_{\sigma_c\in \mathcal{S}_2}\sigma_rB\sigma_c^T.\]

Question

For the Prisoners Dilemma:

What is the row player’s best response to either of the actions of the
column player?

Answer

Recalling that \(A\) is given by:

\[\begin{split}A = \begin{pmatrix}
3 & 0\\
5 & 1
\end{pmatrix}\end{split}\]

Against the first action of the column player the best response is to choose
the second action which gives a utility of 5. This can be expressed as:

\[\text{argmax}_{i\in\mathcal{S}_1}A_{i1}=2\]

Against the second action of the column player the best response is to choose
the second action which gives a utility of 1. This can be expressed as:

\[\text{argmax}_{i\in\mathcal{S}_1}A_{i2}=2\]

The row player’s best response to either of the actions of the column player
is \(\sigma_r^*=(1,0)\). This can be expressed as:

\[\text{argmax}_{i\in\mathcal{S}_1}A_{ij}=2\text{ for all }j\in\mathcal{A}_2\]

Generic best responses in 2 by 2 games

In two player normal form games with \(|A_1|=|A_2|=2\): a 2 by 2 game, the
utility of a row player playing \(\sigma_r=(x, 1 - x)\) against a strategy
\(\sigma_c = (y, 1 - y)\) is linear in \(x\):

\[\begin{split}u_r(\sigma_r, \sigma_c) &= (x, 1 - x) A (y, 1 - y) ^T \\
 &= A_{11}xy + A_{12}x(1-y) + A_{21}(1-x)y + A_{22}(1-x)(1-y) \\
 &= a x + b\end{split}\]

where:

\[\begin{split}a &= A_{11}y + A_{12}(1 - y) - A_{21}y - A_{22}(1 - y)\\
b &= A_{21}y + A_{22}(1 - y)\end{split}\]

This observation allows us to obtain the best response \(\sigma_r^*\)
against any \(\sigma_c = (y, 1 - y)\).

For example, consider Matching Pennies. Below is a plot of
\(u_r(\sigma_r, \sigma_c)\) as a function of \(y\) for \(\sigma_r
\in \{(1, 0), (0, 1)\}\).

(Source code, png, hires.png, pdf)

[image: ../_images/best-responses-1.png]

Given that the utilities in both cases are linear, the best response to any
value of \(y \ne 1/2\) is either \((1, 0)\) or \((0, 1\).
The best response \(\sigma_r^*\) is given by:

\[\begin{split}\sigma_r ^* = \begin{cases}
 (1, 0),& \text{ if } y > 1/2\\
 (0, 1),& \text{ if } y < 1/2\\
 \text{indifferent},& \text{ if } y=1/2
 \end{cases}\end{split}\]

Question

For the Matching Pennies game:

What is the column player’s best response as a function of \(x\) where
\(\sigma_r=(x, 1 - x)\).

Answer

Recalling that \(B\) is given by:

\[\begin{split}B = \begin{pmatrix}
-1 & 1\\
1 & -1
\end{pmatrix}\end{split}\]

This gives:

\[\begin{split}u_c(\sigma_r, (1, 0)) =& -x + (1-x)= 1 - 2x\\
 =& x - (1-x)= -1 + 2x\end{split}\]

Here is a plot of the utilities:

(Source code, png, hires.png, pdf)

[image: ../_images/best-responses-2.png]

General condition for a best response

In a two player game \((A,B)\in{\mathbb{R}^{m\times n}}^2\) a strategy
\(\sigma_r^*\) of the row player is a best response to a column players’
strategy \(\sigma_c\) if and only if:

\[{\sigma_{r^*}}_i > 0 \Rightarrow (A\sigma_c^T)_i = \text{max}_{k \in \mathcal{A}_2}(A\sigma_c ^ T)_k \text{ for all }i \in \mathcal{A}_1\]

Proof

\((A\sigma_c^T)_i\) is the utility of the row player when they play their
\(i^{\text{th}}\) action. Thus:

\[\sigma_rA\sigma_c^T=\sum_{i=1}^{m}{\sigma_r}_i(A\sigma_c^T)_i\]

Let \(u=\max_{k}(A\sigma_c^T)_k\) giving:

\[\begin{split}\sigma_rA\sigma_c^T&=\sum_{i=1}^{m}{\sigma_r}_i(u - u + (A\sigma_c^T)_i)\\
 &=\sum_{i=1}^{m}{\sigma_r}_iu - \sum_{i=1}^{m}{\sigma_r}_i(u - (A\sigma_c^T)_i)\\
 &=u - \sum_{i=1}^{m}{\sigma_r}_i(u - (A\sigma_c^T)_i)\end{split}\]

We know that \(u - (A\sigma_c^T)_i\geq 0\), thus the largest
\(\sigma_rA\sigma_c^T\) can be is \(u\) which occurs if and only if
\({\sigma_r}_i > 0 \Rightarrow (A\sigma_c^T)_i = u\) as required.

Question

For the Rock Paper Scissors
game:

Which of the following pairs of strategies are best responses to each other:

	\(\sigma_r=(0, 0, 1) \text{ and } \sigma_c=(0, 1/2, 1/2)\)

	\(\sigma_r=(1/3, 1/3, 1/3) \text{ and } \sigma_c=(0, 1/2, 1/2)\)

	\(\sigma_r=(1/3, 1/3, 1/3) \text{ and } \sigma_c=(1/3, 1/3, 1/3)\)

Answer

Recalling that \(A\) and \(B\) are given by:

\[\begin{split}A = \begin{pmatrix}
0 & -1 & 1 \\
1 & 0 & -1\\
-1 & 1 & 0\\
\end{pmatrix}\end{split}\]

\[\begin{split}B = - A = \begin{pmatrix}
0 & 1 & -1 \\
-1 & 0 & 1\\
1 & -1 & 0\\
\end{pmatrix}\end{split}\]

We can apply the best response condition to each pairs of strategies:

	\(A\sigma_c^T = \begin{pmatrix}0\\ -1/2\\ 1/2\\\end{pmatrix}\).
\(\text{max}(A\sigma_c^T)=1/2\). The only \(i\) for which
\({\sigma_r}_i > 0\) is \(i=3\) and
\((A\sigma_c^T)_3=\text{max}(A\sigma_c^T)\) thus \(\sigma_r\)
is a best response to \(\sigma_c\). \(\sigma_rB = (1, -1,
0)\). \(\text{max}(\sigma_rB)=1\). The values of \(i\) for
which \({\sigma_c}_i > 0\) are \(i=2\) and \(i=3\) but
\((\sigma_r B)_2 \ne \text{max}(\sigma_r B)\) thus \(\sigma_c\)
is not a best response to \(\sigma_r\).

	\(A\sigma_c^T = \begin{pmatrix}0\\ -1/2\\ 1/2\\\end{pmatrix}\).
\(\text{max}(A\sigma_c^T)=1/2\). The values of \(i\) for which
\({\sigma_r}_i > 0\) are \(i=1\), \(i=2\) and \(i=3\)
however, \((A\sigma_c^T)_2 \ne \text{max}(A\sigma_c^T)\) thus
\(\sigma_r\) is not a best response to \(\sigma_c\).
\(\sigma_rB = (0, 0, 0)\). \(\text{max}(\sigma_rB)=0\). The
values of \(i\) for which \({\sigma_c}_i > 0\) are \(i=2\)
and \(i=3\) and \((\sigma_r B)_2 = (\sigma_r B)_3=
\text{max}(\sigma_r B)\) thus \(\sigma_c\) is a best response to
\(\sigma_r\).

	\(A\sigma_c^T = \begin{pmatrix}0\\ 0\\ 0\\\end{pmatrix}\).
\(\text{max}(A\sigma_c^T)=0\). The values of \(i\) for which
\({\sigma_r}_i > 0\) are \(i=1\), \(i=2\) and \(i=3\)
and \((A\sigma_c^T)_1=(A\sigma_c^T)_2 = (A\sigma_c^T)_3
=\text{max}(A\sigma_c^T)\) thus \(\sigma_r\) is a best response
to \(\sigma_c\). \(\sigma_rB = (0, 0, 0)\).
\(\text{max}(\sigma_rB)=0\). The values of \(i\) for which
\({\sigma_c}_i > 0\) are \(i=1\), \(i=2\) and \(i=3\)
and \((\sigma_r B)_1 =(\sigma_r B)_2 = (\sigma_r B)_3=
\text{max}(\sigma_r B)\) thus \(\sigma_c\) is a best response to
\(\sigma_r\).

Definition of Nash equilibrium

In a two player game \((A, B)\in {\mathbb{R}^{m \times n}} ^ 2\),
\((\sigma_r, \sigma_c)\) is a Nash equilibria if \(\sigma_r\) is a best
response to \(\sigma_c\) and \(\sigma_c\) is a best response to
\(\sigma_r\).

Using Nashpy

See Check if a strategy is a best response for guidance of how to
use Nashpy to check if a strategy is a best response.

Support enumeration

Motivating example: Coordination Game

In the Coordination game in how
many situations do neither player have an incentive to independently change
their strategy?

Neither player having a reason to change their strategy implies that both
strategies are Best responses to each other.

To identify such pairs of strategies, we will use the
General condition for a best response by considering all possible non zero valued
elements \(\sigma_r\) and \(\sigma_c\).

Recall that for the Coordination game the matrices \(A\) and \(B\) are
given by:

\[\begin{split}A = \begin{pmatrix}
3 & 1\\
0 & 2
\end{pmatrix}\end{split}\]

\[\begin{split}B = \begin{pmatrix}
2 & 1\\
0 & 3
\end{pmatrix}\end{split}\]

If we consider strategies that only play a single action there are two options
for each strategy:

\[\sigma_r \in \{(1, 0), (0, 1)\}\]

and:

\[\sigma_c \in \{(1, 0), (0, 1)\}\]

We will inspect all four combinations:

	\(\sigma_r = (1, 0)\) and \(\sigma_c = (1, 0)\) which corresponds to
both players playing their first action which gives: \(u_r(\sigma_r,
\sigma_c)=3\) and \(u_c(\sigma_r, \sigma_c)=2\). If the row player where to
modify their strategy (while the column player stayed unchanged) to play the second
action their utility would decrease. Likewise, if the column player were to
modify their strategy their utility would also decrease.

	\(\sigma_r = (1, 0)\) and \(\sigma_c = (0, 1)\) which corresponds to
the row player playing their first action and the column player playing their
second action which gives: \(u_r(\sigma_r, \sigma_c)=1\) and
\(u_c(\sigma_r, \sigma_c)=1\). In this case, if either player were to move
their utility would increase.

	\(\sigma_r = (0, 1)\) and \(\sigma_c = (1, 0)\) which corresponds to
the row player playing their second action and the column player playing their
first action which gives: \(u_r(\sigma_r, \sigma_c)=0\) and
\(u_c(\sigma_r, \sigma_c)=0\). In this case, if either player were to move
their utility would increase.

	\(\sigma_r = (0, 1)\) and \(\sigma_c = (0, 1)\) which corresponds to
both players playing their second action which gives: \(u_r(\sigma_r,
\sigma_c)=2\) and \(u_c(\sigma_r, \sigma_c)=3\). If the row player where to
modify their strategy (while the column player stayed unchanged) to play the second
action their utility would decrease. Likewise, if the column player were to
modify their strategy their utility would also decrease.

If we now consider strategies that play both actions there is a single
general form:

\[\sigma_r = (x, 1 - x)\text{ for } 0<x<1\]

\[\sigma_c = (y, 1 - y)\text{ for } 0<y<1\]

We can apply the General condition for a best response here.

If \(\sigma_r\) is a best response to \(\sigma_c\) then:

\[(A\sigma_cT)_i = \text{max}_{k\in\{1, 2\}} (A\sigma_c^T)_k \text{ for all }i \in \{1, 2\}\]

which gives:

\[\begin{split}3y + 1(1-y) &= \text{max}_{k \in\{1, 2\}} (A\sigma_c^T)_k\\
0y + 2(1-y) &= \text{max}_{k \in\{1, 2\}} (A\sigma_c^T)_k\end{split}\]

which in turn corresponds to:

\[\begin{split}3y + 1(1 - y) & = 2(1-y)\\
 y & = 1 / 4\end{split}\]

Thus \(\sigma_r = (x, 1 - x)\) with \(0<x<1\) is a best response to
\(\sigma_c\) if and only if \(\sigma_c = (1/4, 3/4)\).

We will now apply the General condition for a best response again but to the column
player:

If \(\sigma_c\) is a best response to \(\sigma_r\) then:

\[(\sigma_rB)_j = \text{max}_{k\in\{1, 2\}} (\sigma_rB)_k \text{ for all }j \in \{1, 2\}\]

which gives:

\[\begin{split}2x + 0(1-x) &= \text{max}_{k \in\{1, 2\}} (\sigma_rB)_k\\
1x + 3(1-x) &= \text{max}_{k \in\{1, 2\}} (\sigma_rB)_k\end{split}\]

which in turn corresponds to:

\[\begin{split}2x & = x + 3(1-x)\\
x & = 3 / 4\end{split}\]

Thus \(\sigma_c = (y, 1 - y)\) with \(0<y<1\) is a best response to
\(\sigma_r\) if and only if \(\sigma_r = (3/4, 1/4)\).

There are 3 pairs of strategies that are best responses to each other:

	\(\sigma_r=(1,0)\) and \(\sigma_c=(1,0)\).

	\(\sigma_r=(0,1)\) and \(\sigma_c=(0,1)\).

	\(\sigma_r=(3/4,1/4)\) and \(\sigma_c=(1/4,3/4)\).

The support enumeration algorithm

The approach used in
Motivating example: Coordination Game is in fact an
application of a formalised algorithm called support enumeration.

The algorithm is as follows:

For a non Degenerate 2 player game
\((A, B)\in{\mathbb{R}^{m\times n}}^2\) the following algorithm returns all
pairs of best responses:

	For all \(1\leq k_1\leq m\) and \(1\leq k_2\leq n\);

	For all pairs of support
\((I, J)\) with \(|I|=k_1\) and
\(|J|=k_2\).

	Solve the following equations (this ensures we have best responses):

\[\begin{align}\begin{aligned} \sum_{i\in I}{\sigma_{r}}_iB_{ij}=v\text{ for all }j\in J\\\sum_{j\in J}A_{ij}{\sigma_{c}}_j=u\text{ for all }i\in I\end{aligned}\end{align} \]

	Solve

	\(\sum_{i=1}^{m}{\sigma_{r}}_i=1\) and \({\sigma_{r}}_i\geq 0\)
for all \(i\)

	\(\sum_{j=1}^{n}{\sigma_{c}}_i=1\) and \({\sigma_{c}}_j\geq 0\)
for all \(j\)

	Check the best response condition.

Repeat steps 3,4 and 5 for all potential support pairs.

Question

Use support enumeration to find all Nash equilibria for the game given by
\(A=\begin{pmatrix} 1 & 1 & -1 \\ 2 & -1 & 0 \end{pmatrix}\) and
\(B=\begin{pmatrix} 1/2 & -1 & -1/2 \\-1 & 3 & 2 \end{pmatrix}\).

Answer

	It is immediate to note that there are no pairs of pure best responses.

	All possible support pairs are:

	\(I=\{1, 2\}\) and \(J=\{1,2\}\)

	\(I=\{1, 2\}\) and \(J=\{1,3\}\)

	\(I=\{1, 2\}\) and \(J=\{2,3\}\)

	Let us solve the corresponding linear equations:

	\(I=\{1, 2\}\) and \(J=\{1, 2\}\):

\[1/2{\sigma_{r}}_1-{\sigma_{r}}_2=-{\sigma_{r}}_1+3{\sigma_{r}}_2\]

\[{\sigma_{r}}_1=8/3{\sigma_{r}}_2\]

\[{\sigma_{c}}_1+{\sigma_{c}}_2=2{\sigma_{c}}_1-{\sigma_{c}}_2\]

\[{\sigma_{c}}_1=2{\sigma_{c}}_2\]

	\(I=\{1, 2\}\) and \(J=\{1,3\}\):

\[1/2{\sigma_{r}}_1-{\sigma_{r}}_2=-1/2{\sigma_{r}}_1+2{\sigma_{r}}_2\]

\[{\sigma_{r}}_1=3{\sigma_{r}}_2\]

\[{\sigma_{c}}_1-{\sigma_{c}}_3=2{\sigma_{c}}_1+0{\sigma_{c}}_3\]

\[{\sigma_{c}}_1=-{\sigma_{c}}_3\]

	\(I=\{1, 2\}\) and \(J=\{2,3\}\):

\[-{\sigma_{r}}_1+3{\sigma_{r}}_2=-1/2{\sigma_{r}}_1+2{\sigma_{r}}_2\]

\[{\sigma_{r}}_1=2{\sigma_{r}}_2\]

\[{\sigma_{c}}_2-{\sigma_{c}}_3=-{\sigma_{c}}_2+0{\sigma_{c}}_3\]

\[2{\sigma_{c}}_2={\sigma_{c}}_3\]

	We check which supports give valid strategies:

	\(I=\{1, 2\}\) and \(J=\{1, 2\}\):

\[\sigma_r=(8/11, 3/11)\]

\[\sigma_c=(2/3, 1/3, 0)\]

	\(I=\{1, 2\}\) and \(J=\{1, 3\}\):

\[\sigma_r=(3/4, 1/4)\]

\[\sigma_c=(k, 0, -k)\]

which is not a valid strategy.

	\(I=\{1, 2\}\) and \(J=\{2, 3\}\):

\[\sigma_r=(2/3, 1/3)\]

\[\sigma_c=(0, 1/3, 2/3)\]

	Let us verify the best response condition:

	\(I=\{1, 2\}\) and \(J=\{1, 2\}\):

\[\sigma_c=(2/3, 1/3, 0)\]

\[\begin{split}A\sigma_c^T=
\begin{pmatrix}
1\\
1
\end{pmatrix}\end{split}\]

Thus \(\sigma_r\) is a best response to \(\sigma_c\)

\[\sigma_r=(8/11, 3/11)\]

\[\sigma_r B=(1/11, 1/11, 2/11)\]

Thus \(\sigma_c\) is not a best response to \(\sigma_r\)
(because there is a better response outside of the support of
\(\sigma_c\)).

	\(I=\{1, 2\}\) and \(J=\{2, 3\}\):

\[\sigma_c=(0, 1/3, 2/3)\]

\[\begin{split}A\sigma_c^T=
\begin{pmatrix}
-1/3\\
-1/3
\end{pmatrix}\end{split}\]

Thus \(\sigma_r\) is a best response to \(\sigma_c\)

\[\sigma_r=(2/3, 1/3)\]

\[\sigma_r B=(0, 1/3, 1/3)\]

Thus \(\sigma_c\) is a best response to \(\sigma_r\).

Thus the (unique) Nash equilibrium for this game is:

\[((2/3, 1/3), (0, 1/3, 2/3))\]

Using Nashpy

See Solve with support enumeration for guidance of how to use Nashpy to
use support enumeration.

Vertex enumeration

The vertex enumeration algorithm implemented in Nashpy is based on the
one described in [Nisan2007].

The algorithm is as follows:

For a nondegenerate 2 player game \((A, B)\in{\mathbb{R}^{m\times n}}^2\)
the following algorithm returns all nash equilibria:

	Obtain the best response Polytopes \(P\) and \(Q\).

	For all pairs of vertices of \(P\) and \(Q\).

	Check if the pair is fully labeled and return the normalised probability
vectors.

Repeat steps 2 and 3 for all pairs of vertices.

Discussion

	Before creating the best response Polytope we need to consider the best
response Polyhedron. For the row player, this corresponds to the set of all
the mixed strategies available to the row player as well as an upper bound on
the utilities to the column player. Analogously for the column player:

\[\begin{align}\begin{aligned}\bar P = \{(x, v) \in \mathbb{R}^m \times \mathbb{R}\;|\; x\geq 0,
 \mathbb{1}x=1,
 B^Tx\leq\mathbb{1}v\}\\\bar Q = \{(y, u) \in \mathbb{R}^n \times \mathbb{R}\;|\; y\geq 0,
 \mathbb{1}y=1,
 Ay\leq\mathbb{1}u\}\end{aligned}\end{align} \]

Note that in both definitions above we have a total of \(m + n\)
inequalities in the constraints.

For \(P\), the first \(m\) of those
constraints correspond to the elements of \(x\) being greater or equal to
0. For a given \(x\), if \(x_i=0\), we say that \(x\) has label
:math`i`. This corresponds to strategy \(i\) not being in the support of
\(x\).

For the last \(n\) of these inequalities, when they are equalities they
correspond to whether or not strategy \(1\leq j \leq n\) of the other
player is a best response to \(x\). Similarly, if strategy \(j\) is a
best response to \(x\) then we say that \(x\) has label \(m +
j\).

This all holds analogously for the column player. If the labels of a pair of
elements of \(\bar P\) and \(\bar Q\) give the full set of integers
from \(1\) to \(m + n\) then they represent strategies that are best
responses to each other. Since, this would imply that either a pure stragey
is not played or it is a best response to the other players strategy.

The difficulty with using the best response Polyhedron is that the upper
bound on the utilities of both players (\(u, v\)) is not known.
Importantly, we do not need to know it. Thus, we assume that in both cases:
\(u=v=1\) (this corresponds to a scaling of our strategy vectors).

This allows us to define the best response Polytopes:

\[\begin{align}\begin{aligned}P = \{(x, v) \in \mathbb{R}^m \times \mathbb{R}\;|\; x\geq 0,
 B^Tx\leq 1\}\\Q = \{(y, u) \in \mathbb{R}^n \times \mathbb{R}\;|\; y\geq 0,
 Ay\leq 1\}\end{aligned}\end{align} \]

	Step 2: The vertices of these polytopes are the points that will have labels
(they are the points that are at the intersection of the underlying
halfspaces [Ziegler2012]).

To find these vertices, nashpy uses scipy which has a handy
class for creating Polytopes using the inequality definitions and being able
to return the vertices. Here is the wrapper written in nashpy that is
used by the vertex enumeration algorithm to give the vertices and
corresponding labels:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 3]])
>>> halfspaces = nash.polytope.build_halfspaces(A)
>>> vertices = nash.polytope.non_trivial_vertices(halfspaces)
>>> for vertex in vertices:
... print(vertex)
(array([0.333..., 0...]), {0, 3})
(array([0..., 0.333...]), {1, 2})
(array([0.25, 0.25]), {0, 1})

	Step 3, we iterate over all pairs of the vertices of both polytopes and pick
out the ones that are fully labeled. Because of the scaling that took place
to create the Polytope from the Polyhedron, we will need to return a
normalisation of both vertices.

Extensive Form Games

Motivating example: A modification of the Coordination Game

Consider the Coordination game
with the modification that Alice and Bob have more information available to
them: Alice decides where they are going and then lets Bob know before Bob makes
their own choice.

This can be represented pictorially as follows:

[image: ../_images/main10.png]

Definition of an Extensive Form Game

An extensive form game consists of:

	A finite set of players \(\mathcal{N}\).

	A tree: \(G = (V, E, x ^ 0)\) where: \(V\) is the set of vertices,
\(E\) the set of edges and \(x ^ 0 \in V\) is the root of the tree.

	\((V_i)_{i \in \mathcal{N}}\) is a partition of the set of vertices that
are not leaves.

	\(O\) is the set of possible game outcomes.

	\(u\) is a function mapping every leaf of \(G\) to an element of
\(0\).

Question

For the modified coordination game:

	What is the finite set of players \(\mathcal{N}\)?

	What the elements \(G = (V, E, x ^ 0)\)?

	What is the partition \((V_i)_{i \in \mathcal{N}}\)?

	What is the set of possible game outcomes \(O\)?

	What is the mapping \(u\) from every leaf of \(G\) to an element
of \(O\)?

Answer

	The set \(\mathcal{N}\) has two players: Alice and Bob.

	The tree is given by:

\[V = \{A, B_1, B_2, O_1, O_2, O_3, O_4\}\]

\[E = \{(A, B_1), (A, B_2), (B_1, O_1), (B_1, O_2), (B_2, O_3), (B_2, O_4)\}\]

\[x ^ 0 = A\]

	The partition of of non leaf vertices is given by:

\[V_{\text{Alice}} = \{A_1\} \qquad V_{\text{Bob}} = \{B_1, B_2\}\]

	The set of possible game ouctomes \(O = \{(3,2), (1, 1), (0, 0), (2, 3)\}\).

	The mapping \(u\) is given by:

\[u(O_1) = (3, 2) \qquad u(O_2) = (1, 1) \qquad u(O_3) = (0, 0) \qquad u(O_4) = (2, 3)\]

Imperfect information

The modified coordination game described here differs from the example given
in the normal for game chapter in
that Bob knows what action is chosen by Alice.

To represent imperfect information we can partition the vertices of a game tree
to indicate which vertices have the same information.

This can be represented pictorially as follows:

[image: ../_images/main11.png]
This indicates that Bob makes a decision at both nodes in \(\{B_1, B_2\}\)
without knowing at which of the two vertices they are. The set \(\{B_1,
B_2\}\) is called an information set.

Definition of an information set

Given a game in extensive form:
\((\mathcal{N}, G, (V_i)_{i\in \mathcal{N}}, O, u)\)
the set of information sets \(v_i\) of player \(i \in \mathcal{N}\) is a partition of
\(V_{i}\).
Each element of \(v_i\)
denotes a set of nodes at which a player is unable to distinguish when
choosing an action.

This implies that:

	Every information set contains vertices for a single player.

	All vertices in an information set must have the same number of successors
(with the same action labels).

Question

For the following games with \(\mathcal{N} = \{\text{Alice},
\text{Bob}\}\), assume that decision nodes \(A_i\) are Alice’s and
\(B_i\) are Bob’s. Obtain all information sets:

	[image: ../_images/main10.png]

	[image: ../_images/main11.png]

	[image: ../_images/main12.png]

	[image: ../_images/main13.png]

	[image: ../_images/main14.png]

Answer

	\(v_{\text{Alice}}=\{\{A\}\}\) \(v_{\text{Bob}}=\{\{B_1\}, \{B_2\}\}\)

	\(v_{\text{Alice}}=\{\{A\}\}\) \(v_{\text{Bob}}=\{\{B_1, B_2\}\}\)

	\(v_{\text{Alice}}=\{\{A_1\}, \{A_2\}\}\) \(v_{\text{Bob}}=\{\{B_1\}, \{B_2\}\}\)

	\(v_{\text{Alice}}=\{\{A_1\}, \{A_2\}\}\) \(v_{\text{Bob}}=\{\{B_1, B_2\}\}\)

	This game has incoherent information sets: the two vertices \(B_1\) and
\(B_2\) have different actions.

Definition of a strategy in an extensive form game

A strategy for a player in an extensive form is collection of probability
distribution over the action set of each information set.

Equivalence of Extensive and Normal Form Games

A game in extensive form can be mapped to a game in normal form by enumerating
all possible strategies that indicate single actions at each information set.
This set of possible strategies corresponds to the actions in the normal form
game.

These strategies can be thought of as vectors in the space of the cross product
of the sets of actions available at every information set.
For player \(i\in \mathcal{N}\) with information sets \(v_i=((v_i)_1,
(v_i)_2, \dots, (v_i)_n)\) a strategy \(s=(s_1, s_2, \dots, s_n\) indicates
what action to take at each information set. So \(s_2\) will prescribe which
action to take at all vertices contained in \((v_i)_2\).

As an example consider the
modified coordination game.
The full enumeration of strategies that indicate single actions for Alice is:

\[\mathcal{A}_1 = \{(\text{Sports}), (\text{Comedy})\}\]

The full enumeration of strategies that indicate single actions for Bob is:

\[\mathcal{A}_2 = \{(\text{Sports}, \text{Sports}), (\text{Sports}, \text{Comedy}), (\text{Comedy}, \text{Sports}), (\text{Comedy}, \text{Comedy})\}\]

So \((\text{Sports}, \text{Comedy})\) indicates to choose Sports at
\(B_1\) and Comedy at \(B_2\).

Using this enumeration the payoff functions can be given by the matrices
\(A, B\):

\[\begin{split}A = \begin{pmatrix}
3 & 3 & 1 & 1\\
0 & 2 & 0 & 2\\
\end{pmatrix}\end{split}\]

\[\begin{split}B = \begin{pmatrix}
2 & 2 & 1 & 1\\
0 & 3 & 0 & 3\\
\end{pmatrix}\end{split}\]

Question

Obtain the Normal Form Game representation corresponding to

[image: ../_images/main11.png]

Answer

The full enumeration of strategies that indicate single actions for Alice is:

\[\mathcal{A}_1 = \{(\text{Sports}), (\text{Comedy})\}\]

The full enumeration of strategies that indicate single actions for Bob is:

\[\mathcal{A}_2 = \{(\text{Sports}), (\text{Comedy})\}\]

This is because there is a single information set for Bob.

Using this enumeration the payoff functions can be given by the matrices
\(A, B\):

\[\begin{split}A = \begin{pmatrix}
3 & 1\\
0 & 2\\
\end{pmatrix}\end{split}\]

\[\begin{split}B = \begin{pmatrix}
2 & 1\\
0 & 3\\
\end{pmatrix}\end{split}\]

Using Nashpy

See Solve with support enumeration for guidance of how to use Nashpy to
use support enumeration to find Nash equilibria once a Normal Form game
representation has been obtained.

The Lemke Howson Algorithm

The Lemke Howson algorithm implemented in Nashpy is based on the
one described in [Nisan2007] originally introduced in [Lemke1964].

The algorithm is as follows:

For a nondegenerate 2 player game \((A, B)\in{\mathbb{R}^{m\times n}}^2\)
the following algorithm returns a single Nash equilibria:

	Obtain the best response Polytopes \(P\) and \(Q\).

	Choose a starting label to drop, this will correspond to a vertex of
\(P\) or \(Q\).

	In that polytope, remove the label from the corresponding vertex and move to
the vertex that shared that label. A new label will be picked up and
duplicated in the other polytope.

	In the other polytope drop the duplicate label and move to the vertex that
shared that label.

Repeat steps 3 and 4 until there are no duplicate labels.

Discussion

This algorithm is implemented using integer pivoting.

	Step 1, the best response polytopes \(P\) and \(Q\) are represented
by a tableau. For example for:

\[\begin{split}A =
\begin{pmatrix}
 3 & 1\\
 1 & 3
\end{pmatrix}\end{split}\]

\[\begin{split}B =
\begin{pmatrix}
 1 & 3\\
 2 & 1
\end{pmatrix}\end{split}\]

This is represented as a pair of tableau:

\[\begin{split}T_c =
\begin{pmatrix}
 3 & 1 & 1 & 0 & 1\\
 1 & 3 & 0 & 1 & 1
\end{pmatrix}\end{split}\]

For reasons that will become clear, we infact shift this tableau so
that the labelling is coherent across both polytopes:

\[\begin{split}T_c =
\begin{pmatrix}
 1 & 0 & 3 & 1 & 1\\
 0 & 1 & 1 & 3 & 1
\end{pmatrix}\end{split}\]

Here it is as a numpy array:

>>> import numpy as np
>>> col_tableau = np.array([[1, 0, 3, 1, 1],
... [0, 1, 1, 3, 1]])

Here is the tableau that corresponds to \(B\):

\[\begin{split}T_r =
\begin{pmatrix}
 1 & 2 & 1 & 0 & 1\\
 3 & 1 & 0 & 1 & 1
\end{pmatrix}\end{split}\]

Here it is as a numpy array:

>>> row_tableau = np.array([[1, 2, 1, 0, 1],
... [3, 1, 0, 1, 1]])

	Step 2, choosing a starting label is choosing an integer from \(0 \leq k
< m + n\) (we start our indices at 0). As an example, let us choose the label
\(1\).

First we need to identify which vertex has that label. The labels of a
tableau correspond to the non basic variables: these are the columns with
more than a single non zero variable:

	The labels of \(T_c\) are thus \(\{2, 3\}\):

>>> import nashpy as nash
>>> nash.integer_pivoting.non_basic_variables(col_tableau)
{2, 3}

	The labels of \(T_r\) are thus \(\{0, 1\}\):

>>> nash.integer_pivoting.non_basic_variables(row_tableau)
{0, 1}

So we are going to drop label \(1\) from \(T_r\).

	Step 3, removing a label and moving from one vertex to another corresponds
to integer pivoting [Dantzig2016]. This is a manipulation of \(T\),
dropping label \(1\) corresponds to pivoting the second column.

To do this we need to identify which row will not change (the “pivot row”),
this is done by finding the smallest ratio of value in that column over the
value in the last column: \((T_{r})_{i4}/(T_{r})_{ik}\).

In our case the first row has corresponding ratio: \(1/2\) and the second
ratio \(1/1\). So our pivot row is the first row:

>>> nash.integer_pivoting.find_pivot_row(row_tableau, column_index=1)
0

What we now do is row operations so as to make the second column correspond
to a basic variable. We will do this by multiplying the second row by 2 and
then subtracting the first row by it:

\[\begin{split}T_r =
\begin{pmatrix}
 1 & 2 & 1 & 0 & 1\\
 5 & 0 & -1 & 2 & 1
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 2\}\) so it has “picked up”
label \(2\):

>>> nash.integer_pivoting.pivot_tableau(row_tableau, column_index=1)
{2}
>>> row_tableau
array([[1, 2, 1, 0, 1],
 [5, 0, -1, 2, 1]])

	Step 4, we will now repeat the previous manipulation on \(T_c\) where we
now need to drop the duplicate label \(2\). We do this by pivoting the
third column.

The ratios are: \(1/3\) for the first row and \(1/1\) for the
second, thus the pivot row is the first row:

>>> nash.integer_pivoting.find_pivot_row(col_tableau, column_index=2)
0

Using similar row operations we obtain:

\[\begin{split}T_c =
\begin{pmatrix}
 1 & 0 & 3 & 1 & 1\\
 -1 & 3 & 0 & 8 & 2
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 3\}\), so it has picked up
label \(0\):

>>> nash.integer_pivoting.pivot_tableau(col_tableau, column_index=2)
{0}
>>> col_tableau
array([[1, 0, 3, 1, 1],
 [-1, 3, 0, 8, 2]])

We now need to drop \(0\) from \(T_r\), we do this by pivoting the
first column. The ratio test: \(1/1 > 1/5\) implies that the second row
is the pivot row. Using similar algebraic manipulations we obtain:

\[\begin{split}T_r =
\begin{pmatrix}
 0 & 10 & 6 & -2 & 4\\
 5 & 0 & -1 & 2 & 1
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{2, 3\}\), so it has picked up
label \(3\):

>>> nash.integer_pivoting.pivot_tableau(row_tableau, column_index=0)
{3}
>>> row_tableau
array([[0, 10, 6, -2, 4],
 [5, 0, -1, 2, 1]])

We now need to drop \(3\) from \(T_c\), we do this by pivoting the
fourth column. The ratio test: \(1/1>2/8\) indicates that we pivot on the
second row which gives:

\[\begin{split}T_c =
\begin{pmatrix}
 9 & -1& 24 & 0 & 6\\
 -1 & 3& 0 & 8 & 2
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 1\}\):

>>> nash.integer_pivoting.pivot_tableau(col_tableau, column_index=3)
{1}
>>> col_tableau
array([[9, -3, 24, 0, 6],
 [-1, 3, 0, 8, 2]])

The union of the labels of \(T_r\) and \(T_c\) is: \(\{0, 1, 2,
3\}\) which implies that we have a fully labeled vertx pair.

The vertex corresponding to \(T_r\) are obtained by setting the non basic
variables to 0 and looking at the corresponding values of the first two
columns:

\[v_r = (1/5, 4/10) = (1/5, 2/5)\]

The vertex corresponding to \(T_c\) are obtained from the last 2 columns:

\[v_c = (6/24, 2/8) = (1/4, 1/4)\]

The final step of the algorithm is to return the normalised probabilities that
correspond to these vertices:

\[((1/3, 2/3), (1/2, 1/2))\]

Degenerate games

A two player game is called nondegenerate if no mixed strategy of support size
\(k\) has more than \(k\) pure best responses.

For example, the zero sum game defined by the following matrix is degenerate:

\[\begin{split}A =
\begin{pmatrix}
 0 & -1 & 1\\
 -1 & 0 & 1\\
 -1 & 1 & 0
\end{pmatrix}\end{split}\]

The third column has two pure best responses.

When dealing with degenerate games unexpected results can occur:

>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [-1, 0, 1], [-1, 0, 1]])
>>> game = nash.Game(A)

Here is the output when using Support enumeration:

>>> for eq in game.support_enumeration():
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.5 0.5 0.] [0.5 0.5 0.]
[0.5 0. 0.5] [0.5 0.5 0.]

Here is the output when using Vertex enumeration:

>>> for eq in game.vertex_enumeration():
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.5 0. 0.5] [0.5 0.5 -0.]
[0.5 0.5 -0.] [0.5 0.5 -0.]

Here is the output when using the The Lemke Howson Algorithm:

>>> for eq in game.lemke_howson_enumeration():
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[0.33... 0.33... 0.33...] [nan]

We see that the lemke-howson algorithm fails but also that the
Support enumeration and Vertex enumeration fail to find some
equilibria: there is in fact a range of strategies the row player can play
against [0.5 0.5 0] that is still a best response.

The Support enumeration algorithm can be run with two optional
arguments:

	non_degenerate=True (False is the default) will only consider
supports of equal size. If you know your game is non degenerate this will make
support enumeration make less checks.

	tol=0 (10 ** -16 is the default), when considering the
underlying linear system tol is considered to be a lower bound for
difference between two real numbers. Using tol=0 ensures a strict
run of the algorithm.

Here is an example:

>>> A = np.array([[4, 9, 9], [9, 1, 6], [9, 2, 3]])
>>> B = np.array([[2, 2, 5], [7, 4, 4], [1, 6, 4]])
>>> game = nash.Game(A, B)
>>> for eq in game.support_enumeration():
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.5 0.5 0.] [0.38 0. 0.62]
[0.2 0.5 0.3] [0.57 0.32 0.11]
>>> for eq in game.support_enumeration(non_degenerate=True):
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.2 0.5 0.3] [0.57 0.32 0.11]
>>> for eq in game.support_enumeration(non_degenerate=False, tol=0):
... print(np.round(eq[0], 2), np.round(eq[1], 2))
[1. 0. 0.] [0. 0. 1.]
[0. 1. 0.] [1. 0. 0.]
[0.2 0.5 0.3] [0.57 0.32 0.11]

Fictitious play

The fictitious play algorithm implemented in Nashpy is based on the
one described in [Fudenberg1998].

The algorithm is as follows:

For a game \((A, B)\in\mathbb{R}^{m\times n}\) define
\(\kappa_t^{i}:S^{-1}\to\mathbb{N}\) to be a function that in a given time
interval \(t\) for a player \(i\) maps a strategy \(s\) from the
opponent’s strategy space \(S^{-1}\) to a number of total times the opponent
has played \(s\).

Thus:

\[\begin{split}\kappa_t^{i}(s^{-i}) = \kappa_{t-1}(s^{-i}) + \begin{cases}
 1,& \text{ if }s^{-i}_{t-1}=s^{-i}\\
 0,& \text{ otherwise}
 \end{cases}\end{split}\]

In practice:

\[\kappa_t^{1} \in \mathbb{Z}^{n}\qquad \kappa_t^{2} \in \mathbb{Z} ^ {m}\]

At stage \(t\), each player assumes their opponent is playing a mixed strategy
based on \(\kappa_{t-1}\):

\[\frac{\kappa_{t-1}}{\sum\kappa_{t-1}}\]

They calculate the expected value of each strategy, which is equivalent to:

\[s_{t}^{1}\in\text{argmax}_{s\in S_1}A\kappa_{t-1}^{2}\qquad s_{t}^{2}\in\text{argmax}_{s\in S_2}B^T\kappa_{t-1}^{1}\]

In the case of multiple best responses, a random choice is made.

Discussion

Note that this algorithm will not always converge and sometimes it depends on
the form of the game.

For example:

>>> import numpy as np
>>> import nashpy as nash
>>> A = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
>>> B = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> np.random.seed(0)
>>> play_counts = tuple(game.fictitious_play(iterations=iterations))
>>> play_counts[-1]
[array([5464., 1436., 3100.]), array([2111., 4550., 3339.])]

We can visualise the lack of convergence:

>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> probabilities = [row_play_counts / np.sum(row_play_counts) for row_play_counts, col_play_counts in play_counts]
>>> for number, strategy in enumerate(zip(*probabilities)):
... plt.plot(strategy, label=f"s_{number}")
>>> plt.xlabel("Iteration")
>>> plt.ylabel("Probability")
>>> plt.title("Actions taken by row player")
>>> plt.legend()

[image: ../_images/main2.svg]If we modify the game slightly we obtain a different outcome:

>>> A = np.array([[1 / 2, 1, 0], [0, 1 / 2, 1], [1, 0, 1 / 2]])
>>> B = np.array([[1 / 2, 0, 1], [1, 1 / 2, 0], [0, 1, 1 / 2]])
>>> game = nash.Game(A, B)
>>> np.random.seed(0)
>>> play_counts = tuple(game.fictitious_play(iterations=iterations))
>>> play_counts[-1]
[array([3290., 3320., 3390.]), array([3356., 3361., 3283.])]

With a clear convergence now visible:

>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> probabilities = [row_play_counts / np.sum(row_play_counts) for row_play_counts, col_play_counts in play_counts]
>>> for number, strategy in enumerate(zip(*probabilities)):
... plt.plot(strategy, label=f"s_{number}")
>>> plt.xlabel("Iteration")
>>> plt.ylabel("Probability")
>>> plt.title("Actions taken by row player")
>>> plt.legend()

[image: ../_images/main3.svg]

Stochastic fictitious play

The stochastic fictitious play algorithm implemented in Nashpy is based on the
one given in [Hofbauer2002].

As explained in [Fudenberg1998] stochastic fictitious play “avoids the discontinuity inherent
in standard fictitious play, where a small change in the data can lead to an abrupt change in
behaviour.”

The algorithm is designed to converge in cases where fictitious play does not
converge. Note that in some cases this will require a thoughtful choice of the etha
and epsilon_bar parameters.

For a game \((A, B)\in\mathbb{R}^{m\times n}\) define
\(\kappa_t^{i}:S^{-1}\to\mathbb{N}\) to be a function that in a given time
interval \(t\) for a player \(i\) maps a strategy \(s\) from the
opponent’s strategy space \(S^{-1}\) to a number of total times the opponent
has played \(s\).

As per standard Fictitious play, each player assumes their opponent is playing a mixed strategy
based on \(\kappa_{t-1}\). If no play has taken place, then the probability of playing each
action is assumed to be equal. The assumed mixed strategies of a player’s opponent are multplied
by the player’s own payoff matrices to calculate the expected payoff of each action.

A stochastic pertubation \(\epsilon_i\) is added to each expected payoff \(\pi_i\) to give a
pertubated payoff. Each \(\epsilon_i\) is independent of each \(\pi_i\) and is a random number
between 0 and epsilon_bar.

A logit choice function is used to map the pertubated payoff to a non-negative probability distribution,
corresponding to the probability with which each strategy is chosen by the player. The logit choice function
can be seen below:

\[L_i(\pi) = \frac{\exp (\eta ^{-1} \pi_i)}{\sum_{j}\exp (\eta ^{-1} \pi_j)}\]

Discussion

Using the same game from the fictitious play discussion section, we can visualise a lack of convergence when
using the default value of epsilon_bar:

>>> import numpy as np
>>> import nashpy as nash
>>> A = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
>>> B = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> np.random.seed(0)
>>> play_counts_and_distribuions = tuple(game.stochastic_fictitious_play(iterations=iterations))
>>> play_counts, distributions = play_counts_and_distribuions[-1]
>>> print(play_counts)
[array([3937., 1907., 4156.]), array([2823., 5458., 1719.])]

>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> probabilities = [
... row_play_counts / np.sum(row_play_counts)
... if np.sum(row_play_counts) != 0
... else row_play_counts + 1 / len(row_play_counts)
... for (row_play_counts, col_play_counts), _ in play_counts_and_distribuions]
>>> for number, strategy in enumerate(zip(*probabilities)):
... plt.plot(strategy, label=f"s_{number}")
>>> plt.xlabel("Iteration")
>>> plt.ylabel("Probability")
>>> plt.title("Actions taken by row player")
>>> plt.legend()

[image: ../_images/main7.svg]Observe below that the game converges when passing values for etha and epsilon_bar:

>>> A = np.array([[1 / 2, 1, 0], [0, 1 / 2, 1], [1, 0, 1 / 2]])
>>> B = np.array([[1 / 2, 0, 1], [1, 1 / 2, 0], [0, 1, 1 / 2]])
>>> game = nash.Game(A, B)
>>> iterations = 10000
>>> etha = 0.1
>>> epsilon_bar = 10**-1
>>> np.random.seed(0)
>>> play_counts_and_distribuions = tuple(game.stochastic_fictitious_play(iterations=iterations, etha=etha, epsilon_bar=epsilon_bar))
>>> play_counts_and_distribuions[-1]
([array([3300., 3293., 3407.]), array([3320., 3372., 3308.])], [array([0.33502382, 0.41533594, 0.24964024]), array([0.18890743, 0.42793694, 0.38315563])])
>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> probabilities = [
... row_play_counts / np.sum(row_play_counts)
... if np.sum(row_play_counts) != 0
... else row_play_counts + 1 / len(row_play_counts)
... for (row_play_counts, col_play_counts), _ in play_counts_and_distribuions]
>>> for number, strategy in enumerate(zip(*probabilities)):
... plt.plot(strategy, label=f"s_{number}")
>>> plt.xlabel("Iteration")
>>> plt.ylabel("Probability")
>>> plt.title("Actions taken by row player")
>>> plt.legend()

[image: ../_images/main8.svg]

Replicator dynamics

The replicator dynamic algorithm implemented in Nashpy is based on the
one described in [Fudenberg1998].

Strategies are assigned amongst the popoulation. Individuals randomly
encounter other individuals and play their assigned strategy.

As the game continues, the proportion of the population playing each strategy
increases or decreases depending on whether the payoff of the strategy is higher
or lower respectively than the mean payoff of the population.

The row player represents a given individual and the column player is the population.

Given a matrix \(A\in\mathbb{R}^{m\times n}\) that corresponds to the utilities
of the row player, we have:

\[f = Ax\]

Where \(f\in\mathbb{R}^{m\times 1}\) corresponds to the fitness of each strategy
and \(x\in\mathbb{R}^{m\times 1}\) corresponds to the population size of each strategy

Equivalently, where \(\phi\) equals the average fitness of the population, we have:

\[\phi = fx\]

In matrix formation we can calculate the rate of change of the strategies:

\[\frac{dx}{dt}_i = x_i(f_i - \phi)\text{ for all }i\]

Discussion

Stability is acheived in replicator dynamics when \(\frac{dx}{dt} = 0\).
Every stable steady state is a Nash equilibria, and every Nash equilibria is a steady
state in replicator dynamics.

A steady state is when the population shares of all strategies are constant.

Steady states are reached when either:

	An entire population plays the same strategy

	A population plays a mixture of the strategies (such that there is indifference between the fitness)

It is possible that the game does not converge to a steady state. See below an example of a game of Rock,
Paper, Scissors that does not converge:

>>> import numpy as np
>>> import nashpy as nash
>>> import matplotlib.pyplot as plt
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> game = nash.Game(A)
>>> y0 = np.array([0.3, 0.35, 0.35])

>>> plt.plot(game.replicator_dynamics(y0=y0))
>>> plt.xlabel("Timepoints")
>>> plt.ylabel("Probability")
>>> plt.title("Probability distribution of strategies over time")
>>> plt.legend([f"s_{0}", f"s_{1}", f"s_{2}"], loc='upper left')

[image: ../_images/main4.svg]Below shows an example of a stable steady state:

>>> import numpy as np
>>> import nashpy as nash
>>> import matplotlib.pyplot as plt
>>> A = np.array([[4, 3], [2, 3]])
>>> game = nash.Game(A)
>>> y0 = np.array([1 / 2, 1 / 2])
>>> timepoints = np.linspace(0, 10, 1000)

>>> plt.plot(game.replicator_dynamics(y0=y0, timepoints=timepoints))
>>> plt.xlabel("Timepoints")
>>> plt.ylabel("Probability")
>>> plt.title("Probability distribution of strategies over time")
>>> plt.legend([f"s_{0}", f"s_{1}"])

[image: ../_images/main5.svg]Evolutionary stable strategies (ESS) stay stable subject to small evolutionary change. This means that
the strategy cannot be invaded by any of the other strategies in the population.
Every ESS is an asymptotically stable steady state of the replicator dynamic, but the converse does not
necessarily hold.

To visualise an example of ESS consider the matrix \(A = \begin{pmatrix} 4 & 3 \\ 2 & 3\end{pmatrix}\).
It can be shown that \((1, 0)\) is an ESS for this game. Below we take a small change from this strategy
and note that the replicator dynamics guide us back to it.

>>> import numpy as np
>>> import nashpy as nash
>>> import matplotlib.pyplot as plt
>>> A = np.array([[4, 3], [2, 3]])
>>> game=nash.Game(A)
>>> epsilon = 1 / 10
>>> y0 = np.array([1 - epsilon, 0 + epsilon])
>>> timepoints = np.linspace(0, 10, 1000)
>>> timepoints[-1]
10.0

>>> plt.plot(game.replicator_dynamics(y0=y0, timepoints=timepoints))
>>> plt.xlabel("Timepoints")
>>> plt.ylabel("Probability")
>>> plt.title("Probability distribution of strategies over time")
>>> plt.legend([f"s_{0}", f"s_{1}"])

[image: ../_images/main6.svg]

Asymmetric replicator dynamics

The asymmetric replicator dynamics algorithm is implemented in Nashpy
based on the work presented in [Elvio2011]. This is considered as the
asymmetric version of the symmetric Replicator dynamics.

There exists a population with two types of individuals where each type has
their own strategy set. Strategies are assigned amongst the population.
Individuals randomly encounter individuals of the opposite type and play their
assigned strategies.

As the game progresses the proportion of each type playing each strategy changes
based on their previous interactions.

The row player represents the first type of individuals and the column player
represents the other one.

Given two matrices \(A\in\mathbb{R}^{m\times n}\) and
\(B\in\mathbb{R}^{m\times n}\) that correspond to the utilities
of the row player and column player respectively, we define:

\[\begin{split}f_x = Ay \\
f_y = x^T B\end{split}\]

Where \(x\in\mathbb{R}^{m\times 1}\) and \(y\in\mathbb{R}^{n\times 1}\)
corresponds to the population size of the strategies of the two players and
\(f_x\in\mathbb{R}^{n\times1}\) and \(f_y\in\mathbb{R}^{1\times m}\)
corresponds to the fitness of the strategies of the row player and the column
player respectively.

Similarly, the average fitness for the two types of populations is given by
\(\phi_x\) and \(\phi_y\) where:

\[\begin{split}\phi_x = f_x x^T \\
\phi_y = f_y y\end{split}\]

In matrix notation the rate of change of the strategies of both types of
individuals is captured by:

\[\begin{split}\frac{dx}{dt}_i = x_i((f_x)_i - \phi_x) \text{ for all }i \\
\frac{dy}{dt}_i = y_i((f_y)_i - \phi_y) \text{ for all }i\end{split}\]

Discussion

Stability is achieved in asymmetric replicator dynamics when both
\(\frac{dx}{dt} = 0\) and \(\frac{dy}{dt} = 0\).
Every stable steady state is a Nash equilibria, and every Nash equilibria
is a steady state in asymmetric replicator dynamics.

Similarly to Replicator dynamics, a game is not guaranteed to converge
to a steady state.
Find below the probability distributions for both the row player and the column
player over time, of a game that does not converge:

>>> import matplotlib.pyplot as plt
>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> B = A.transpose()
>>> game = nash.Game(A, B)
>>> x0 = np.array([0.3, 0.35, 0.35])
>>> y0 = np.array([0.3, 0.35, 0.35])
>>> xs, ys = game.asymmetric_replicator_dynamics(x0=x0, y0=y0)

>>> plt.figure(figsize=(15, 5))
>>> plt.subplot(1, 2, 1)
>>> plt.plot(xs)
>>> plt.title("Probability distribution of strategies over time for row player")
>>> plt.legend([f"s_{0}", f"s_{1}", f"s_{2}"])
>>> plt.subplot(1, 2, 2)
>>> plt.plot(ys)
>>> plt.xlabel("Timepoints")
>>> plt.ylabel("Probability")
>>> plt.title("Probability distribution of strategies over time for column player")
>>> plt.legend([f"s_{0}", f"s_{1}", f"s_{2}"])

[image: ../_images/main.svg]Find below an example of a game that is able to reach a stable steady state:

>>> import matplotlib.pyplot as plt
>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[2, 2], [3, 4]])
>>> B = np.array([[4, 3], [3, 2]])
>>> game = nash.Game(A, B)
>>> x0 = np.array([0.9, 0.1])
>>> y0 = np.array([0.3, 0.7])
>>> xs, ys = game.asymmetric_replicator_dynamics(x0=x0, y0=y0)

>>> plt.figure(figsize=(15, 5))
>>> plt.subplot(1, 2, 1)
>>> plt.plot(xs)
>>> plt.title("Probability distribution of strategies over time for row player")
>>> plt.legend([f"s_{0}", f"s_{1}"])
>>> plt.subplot(1, 2, 2)
>>> plt.plot(ys)
>>> plt.xlabel("Timepoints")
>>> plt.ylabel("Probability")
>>> plt.title("Probability distribution of strategies over time for column player")
>>> plt.legend([f"s_{0}", f"s_{1}"])

[image: ../_images/main1.svg]

Reference

	John Nash

	How does Nashpy relate to Gambit

	Other Python Game theory libraries

	Bibliography

	Source files

John Nash

This library is named after the mathematician John Nash. He is most famous for
his work in Game Theory that culminated in him winning a Noble prize in
Economics. The book [Nasar2011] (popularized in a 2001 movie) gives a good
overview of his life.

The work he received a Noble prize for was a proof that a game always has
an equilibrium [Nash1950]. His proof is an exceptional piece of mathematics
where he uses a fixed point theorem by showing that an equilibrium is equivalent
to a fixed point of a function.

Subsequently, these equilibria have been referred to as Nash equilibria.

How does Nashpy relate to Gambit

Gambit [http://www.gambit-project.org/] is the state of the art software
library for Game Theory [McKelvey2016]. It also has a Python interface. It
handles \(N\geq2\) player games and is computationally efficient. It is a
much more mature piece of software than Nashpy.

It does however sometimes prove difficult to install (because of the
required C libraries), in particular installation is not supported on Windows.
In those instances you can use Game Theory Explorer [http://gte.csc.liv.ac.uk/index/] which is a great web point and click
Graphical User Interface (GUI) to Gambit.

The main mission statement of Nashpy is to provide a
Python library that implements algorithms that are implemented using the
scientific Python stack (numpy and scipy).

This is motivated by the fact that I [http://vknight.org/] wanted a Python
library (not a GUI as I am keen to teach reproducibly research methodologies)
for teaching my Mathematics students. Using the Gambit Python interface is not
sufficient for this as students need to be able to install it on their own
machines (without difficulty).

All the algorithms in Nashpy are implemented with readability as the
main motivation. This at times comes at an efficiency cost. For example,
support-enumeration builds the entire Polytope representation (using
functionality of scipy) which is not efficient.

To summarise:

	If you want to do sophisticated efficient game theoretic computations, use
Gambit [http://www.gambit-project.org/].

	If you are happy to use a GUI use Game Theory Explorer [http://gte.csc.liv.ac.uk/index/].

	If you would like a Python library that only requires the common scientific
python stack for two player games you
can use Nashpy.

Other Python Game theory libraries

	Axelrod [http://axelrod.readthedocs.io/en/stable/]: a research library
aimed at the study of the Iterated Prisoners dilemma [Knight2016].

	Gambit [http://www.gambit-project.org/]: a C library with a Python
interface for the computation of equilibria [McKelvey2016].
How does Nashpy relate to Gambit.

	Game theory explorer [http://gte.csc.liv.ac.uk/ndex/] a web interface to
gambit useful for teaching. [Savani2015]

	PyNFG [https://pypi.python.org/pypi/PyNFG/0.1.2/]: PyNFG is a Python
package for modeling and solving Network Form Games.

	lrslib [http://cgm.cs.mcgill.ca/~avis/C/lrs.html]: A C implementation of a
reverse search algorithm with modules for Nash equilibria computation.

	sagemath [http://doc.sagemath.org/html/en/reference/game_theory/index.html]: The
mathematical software package Sage has various algorithms for the computation
of Nash equilibria.

Bibliography

This is a collection of various bibliographic items referenced in the
documentation.

	Dantzig2016

	Dantzig, George. Linear programming and extensions. Princeton university press, 2016. APA

	Elvio2011

	Elvio, Accinelli and Carrera, Edgar. 2011. Evolutionarily Stable Strategies and Replicator Dynamics in Asymmetric Two-Population Games. 10.1007/978-3-642-11456-4_3.

	Fudenberg1998

	Fudenberg, Drew, et al. The theory of learning in games. Vol. 2. MIT press, 1998.

	Hofbauer2002

	Hofbauer, Josef, and William H. Sandholm. “On the global convergence of stochastic fictitious play.” Econometrica 70.6 (2002): 2265-2294.

	Knight2016

	Knight, V. et al., (2016). An Open Framework for the Reproducible Study of the Iterated Prisoner’s Dilemma. Journal of Open Research Software. 4(1), p.e35. DOI: http://doi.org/10.5334/jors.125

	Lemke1964

	Lemke, Carlton E., and Joseph T. Howson, Jr. “Equilibrium points of bimatrix games.” Journal of the Society for Industrial and Applied Mathematics 12.2 (1964): 413-423.

	Maschler2013

	Maschler, M., Eilon Solan, and Shmuel Zamir. “Game theory. Translated from the Hebrew by Ziv Hellman and edited by Mike Borns.” (2013).

	McKelvey2016

	McKelvey, Richard D., McLennan, Andrew M., and Turocy, Theodore L. (2016). Gambit: Software Tools for Game Theory, Version 16.0.1. http://www.gambit-project.org.

	Nasar2011

	Nasar, Sylvia. A beautiful mind. Simon and Schuster, 2011. APA

	Nash1950

	Nash, John F. “Equilibrium points in n-person games.” Proceedings of the national academy of sciences 36.1 (1950): 48-49.

	Nisan2007

	Nisan, Noam, et al., eds. Algorithmic game theory. Vol. 1. Cambridge: Cambridge University Press, 2007.

	Savani2015

	Rahul Savani and Bernhard von Stengel. Game Theory Explorer – Software for the Applied Game Theorist. Computational Management Science 12, 5-33, 2015

	Ziegler2012

	Ziegler, Günter M. Lectures on polytopes. Vol. 152. Springer Science & Business Media, 2012. APA

Source files

Subpackages

	nash.algorithms package
	Submodules

	nashpy.algorithms.support_enumeration module

	nashpy.algorithms.vertex_enumeration module

	nashpy.algorithms.lemke_howson module

	nash.learning package
	Submodules

	nashpy.learning.fictitious_play module

Submodules

nashpy.game module

A class for a normal form game

	
class nashpy.game.Game(*args: Any)

	Bases: object

A class for a normal form game.

	Parameters

	
	A (-) – non zero sum games.

	B (2 dimensional list/arrays representing the payoff matrices for) – non zero sum games.

	A – zero sum game.

	
asymmetric_replicator_dynamics(x0=None, y0=None, timepoints=None)

	Returns two arrays, corresponding to the two players, showing the
probability of each strategy being played over time using the asymmetric
replicator dynamics algorithm.

	Parameters

	
	x0 (array) – The initial population distribution of the row player.

	y0 (array) – The initial population distribution of the column player.

	timepoints (array) – The iterable of timepoints.

	Returns

	The 2 population distributions over time.

	Return type

	Tuple

	
fictitious_play(iterations, play_counts=None)

	Return a given sequence of actions through fictitious play. The
implementation corresponds to the description of chapter 2 of
[Fudenberg1998].

1. Players have a belief of the strategy of the other player: a vector
representing the number of times the player has chosen a given strategy.
2. Players choose a best response to the belief.
3. Players update their belief based on the latest choice of the
opponent.

	Parameters

	
	iterations (int) – The number of iterations of the algorithm.

	play_counts (array) – The play counts.

	Returns

	The play counts

	Return type

	Generator

	
fixation_probabilities(initial_population, repetitions)

	Return the fixation probabilities for all types of individuals.

The returned array will have the same dimension as the number of rows or
columns as the payoff matrix A. The ith element of the returned array
corresponds to the probability that the ith strategy becomes fixed given the
initial population.

This is a stochastic algorithm and the probabilities are estimated over a
number of repetitions.

	Parameters

	
	initial_population (array) – the initial population

	repetitions (int) – The number of iterations of the algorithm.

	Returns

	The fixation probability of each type.

	Return type

	array

	
is_best_response(sigma_r, sigma_c)

	Checks if sigma_r is a best response to sigma_c and vice versa.

	Parameters

	
	sigma_r (array) – The row player strategy

	sigma_c (array) – The column player strategy

	Returns

	A pair of booleans, the first indicates if sigma_r is a best
response to sigma_c. The second indicates if sigma_c is a best
response to sigma_r.

	Return type

	tuple

	
lemke_howson(initial_dropped_label)

	Obtain the Nash equilibria using the Lemke Howson algorithm implemented
using integer pivoting.

Algorithm implemented here is Algorithm 3.6 of [Nisan2007].

	Start at the artificial equilibrium (which is fully labeled)

	Choose an initial label to drop and move in the polytope for which
the vertex has that label to the edge
that does not share that label. (This is implemented using integer
pivoting)

	A label will now be duplicated in the other polytope, drop it in a
similar way.

	Repeat steps 2 and 3 until have Nash Equilibrium.

	Parameters

	initial_dropped_label (int) – The initial dropped label.

	Returns

	An equilibria

	Return type

	Tuple

	
lemke_howson_enumeration()

	Obtain Nash equilibria for all possible starting dropped labels
using the lemke howson algorithm. See Game.lemke_howson for more
information.

Note: this is not guaranteed to find all equilibria.

	Yields

	Tuple – An equilibria

	
moran_process(initial_population)

	Return a generator of population across the Moran process. The last
population is when only a single type of individual is present in the
population.

	Parameters

	initial_population (array) – the initial population

	Returns

	The generations.

	Return type

	Generator

	
replicator_dynamics(y0=None, timepoints=None)

	Implement replicator dynamics
Return an array showing probability of each strategy being played over
time.
The total population is constant. Strategies can either stay constant
if equilibria is achieved, replicate or die.

	Parameters

	
	y0 (array) – The initial population distribution.

	timepoints (array) – The iterable of timepoints.

	Returns

	The population distributions over time.

	Return type

	array

	
stochastic_fictitious_play(iterations, play_counts=None, etha=0.1, epsilon_bar=0.01)

	Return a given sequence of actions and mixed strategies through stochastic fictitious play. The
implementation corresponds to the description given in [Hofbauer2002].

	Parameters

	
	iterations (int) – The number of iterations of the algorithm.

	play_counts (array) – The play counts.

	etha (float) – The noise parameter for the logit choice function.

	epsilon_bar (float) – The maximum stochastic perturbation.

	Returns

	The play counts

	Return type

	Generator

	
support_enumeration(non_degenerate=False, tol=1e-16)

	Obtain the Nash equilibria using support enumeration.

Algorithm implemented here is Algorithm 3.4 of [Nisan2007].

	For each k in 1…min(size of strategy sets)

	For each I,J supports of size k

	Solve indifference conditions

	Check that have Nash Equilibrium.

	Parameters

	
	non_degenerate (bool) – Whether or not to consider supports of equal size. By default
(False) only considers supports of equal size.

	tol (float) – A tolerance parameter for equality.

	Returns

	The equilibria.

	Return type

	generator

	
vertex_enumeration()

	Obtain the Nash equilibria using enumeration of the vertices of the best
response polytopes.

Algorithm implemented here is Algorithm 3.5 of [Nisan2007].

	Build best responses polytopes of both players

	For each vertex pair of both polytopes

	Check if pair is fully labelled

	Return the normalised pair

	Returns

	The equilibria.

	Return type

	generator

Module contents

A library to compute equilibria of 2 player normal form games

nash.algorithms package

Submodules

nashpy.algorithms.support_enumeration module

A class for a normal form game

	
nashpy.algorithms.support_enumeration.indifference_strategies(A: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], B: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], non_degenerate: bool = False, tol: float = 1e-16) → Generator[Tuple[bool, bool, Any, Any], Any, None]

	A generator for the strategies corresponding to the potential supports

	Parameters

	
	A (array) – The row player utility matrix.

	B (array) – The column player utility matrix

	non_degenerate (bool) – Whether or not to consider supports of equal size. By default
(False) only considers supports of equal size.

	tol (float) – A tolerance parameter for equality.

	Yields

	Generator – A generator of all potential strategies that are indifferent on each
potential support. Return False if they are not valid (not a
probability vector OR not fully on the given support).

	
nashpy.algorithms.support_enumeration.is_ne(strategy_pair: tuple, support_pair: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]]], payoff_matrices: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]]]) → bool

	Test if a given strategy pair is a pair of best responses

	Parameters

	
	strategy_pair (tuple) – a 2-tuple of numpy arrays.

	support_pair (tuple) – a 2-tuple of numpy arrays of integers.

	payoff_matrices (tuple) – a 2-tuple of numpy array of payoff matrices.

	Returns

	True if a given strategy pair is a pair of best responses.

	Return type

	bool

	
nashpy.algorithms.support_enumeration.obey_support(strategy, support: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], tol: float = 1e-16) → bool

	Test if a strategy obeys its support

	Parameters

	
	strategy (array) – A given strategy vector

	support (array) – A strategy support

	tol (float) – A tolerance parameter for equality.

	Returns

	whether or not that strategy does indeed have the given support

	Return type

	bool

	
nashpy.algorithms.support_enumeration.potential_support_pairs(A: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], B: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], non_degenerate: bool = False) → Generator[tuple, Any, None]

	A generator for the potential support pairs

	Parameters

	
	A (array) – The row player utility matrix.

	B (array) – The column player utility matrix

	non_degenerate (bool) – Whether or not to consider supports of equal size. By default
(False) only considers supports of equal size.

	Yields

	Generator – A pair of possible supports.

	
nashpy.algorithms.support_enumeration.powerset(n: int) → Iterator[Tuple[Any, ...]]

	A power set of range(n)

Based on recipe from python itertools documentation:

https://docs.python.org/2/library/itertools.html#recipes

	Parameters

	n (int) – The defining parameter of the powerset.

	Returns

	The powerset

	Return type

	Iterator

	
nashpy.algorithms.support_enumeration.solve_indifference(A, rows=None, columns=None) → Union[bool, Any]

	Solve the indifference for a payoff matrix assuming support for the
strategies given by columns

Finds vector of probabilities that makes player indifferent between
rows. (So finds probability vector for corresponding column player)

	Parameters

	
	A (array) – The row player utility matrix.

	rows (array) – Array of integers corresponding to rows to consider.

	columns (array) – Array of integers corresponding to columns to consider.

	Returns

	The solution to the indifference equations.

	Return type

	Union

	
nashpy.algorithms.support_enumeration.support_enumeration(A: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], B: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], non_degenerate: bool = False, tol: float = 1e-16) → Generator[Tuple[bool, bool], Any, None]

	Obtain the Nash equilibria using support enumeration.

Algorithm implemented here is Algorithm 3.4 of [Nisan2007]

	For each k in 1…min(size of strategy sets)

	For each I,J supports of size k

	Solve indifference conditions

	Check that have Nash Equilibrium.

	Parameters

	
	A (array) – The row player utility matrix.

	B (array) – The column player utility matrix

	non_degenerate (bool) – Whether or not to consider supports of equal size. By default
(False) only considers supports of equal size.

	tol (float) – A tolerance parameter for equality.

	Yields

	Generator – The equilibria.

nashpy.algorithms.vertex_enumeration module

A class for the vertex enumeration algorithm

	
nashpy.algorithms.vertex_enumeration.vertex_enumeration(A: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], B: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]]) → Generator[Tuple[float, float], Any, None]

	Obtain the Nash equilibria using enumeration of the vertices of the best
response polytopes.

Algorithm implemented here is Algorithm 3.5 of [Nisan2007]

	Build best responses polytopes of both players

	For each vertex pair of both polytopes

	Check if pair is fully labelled

	Return the normalised pair

	Parameters

	
	A (array) – The row player utility matrix.

	B (array) – The column player utility matrix

	Yields

	Generator – The equilibria.

nashpy.algorithms.lemke_howson module

A class for the Lemke Howson algorithm

	
nashpy.algorithms.lemke_howson.lemke_howson(A: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], B: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], initial_dropped_label: int = 0) → Tuple[numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]]]

	Obtain the Nash equilibria using the Lemke Howson algorithm implemented
using integer pivoting.

Algorithm implemented here is Algorithm 3.6 of [Nisan2007].

	Start at the artificial equilibrium (which is fully labeled)

	Choose an initial label to drop and move in the polytope for which
the vertex has that label to the edge
that does not share that label. (This is implemented using integer
pivoting)

	A label will now be duplicated in the other polytope, drop it in a
similar way.

	Repeat steps 2 and 3 until have Nash Equilibrium.

	Parameters

	
	A (array) – The row player payoff matrix

	B (array) – The column player payoff matrix

	initial_dropped_label (int) – The initial dropped label.

	Returns

	An equilibria

	Return type

	Tuple

	
nashpy.algorithms.lemke_howson.shift_tableau(tableau: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], shape: Tuple[int, ...]) → numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]]

	Shift a tableau to ensure labels of pairs of tableaux coincide

	Parameters

	
	tableau (array) – a tableau corresponding to a vertex of a polytope.

	shape (tuple) – the required shape of the tableau

	Returns

	The shifted tableau

	Return type

	array

	
nashpy.algorithms.lemke_howson.tableau_to_strategy(tableau: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], basic_labels: Set[int], strategy_labels: Iterable) → numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]]

	Return a strategy vector from a tableau

	Parameters

	
	tableau (array) – a tableau corresponding to a vertex of a polytope.

	basic_labels (set) – the set of basic labels.

	strategy_labels (Iterable) – the set of labels that correspond to strategies.

	Returns

	A strategy.

	Return type

	array

nash.learning package

Submodules

nashpy.learning.fictitious_play module

Code to carry out fictitious learning

	
nashpy.learning.fictitious_play.fictitious_play(A: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], B: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], iterations: int, play_counts: Optional[Any] = None) → Generator

	Implement fictitious play

	Parameters

	
	A (array) – The row player payoff matrix.

	B (array) – The column player payoff matrix.

	iterations (int) – The number of iterations of the algorithm.

	play_counts (Optional) – The play counts.

	Yields

	Generator – The play counts.

	
nashpy.learning.fictitious_play.get_best_response_to_play_count(A: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], play_count: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]]) → int

	Returns the best response to a belief based on the playing distribution of the opponent

	Parameters

	
	A (array) – The utility matrix.

	play_count (array) – The play counts.

	Returns

	The action that corresponds to the best response.

	Return type

	int

	
nashpy.learning.fictitious_play.update_play_count(play_count: numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]], play: int) → numpy.ndarray[Any, numpy.dtype[numpy.typing._generic_alias.ScalarType]]

	Update a belief vector with a given play

	Parameters

	
	play_count (array) – The play counts.

	play (int) – The given play.

	Returns

	The updated play counts.

	Return type

	array

Contributor documentation

This is guide explains the various tools and steps used to contribute code to
Nashpy.

	Tutorial: make a contribution to the documentation
	Forking the repository

	Cloning the repository

	Creating a branch

	Modifying the documentation

	Checking the modification

	Running the test suite

	Committing the change

	Pushing the change to Github

	Opening a Pull Request

	Making further modifications

	How to
	How to fork the repository

	How to clone the repository

	How to update from upstream

	How to create a branch

	How to create a virtual environment

	How to install the library from source

	How to run tests

	How to check for insensitive language

	How to write a docstring

	How to write a type hint

	How to write tests

	How to make a commit

	How to push changes

	How to open a pull request

	Discussion
	The code structure of Nashpy

	Writing clean tests with pytest

	Testing across environments with tox

	Installing and packaging with flit

	Virtual environments

	Checking code is tested with coverage

	Testing with properties with hypothesis

	Ensuring consistent code style with Black

	Static code analysis with flake8

	Checking the presence of docstrings with interrogate

	Checking the format of docstrings with darglint

	Checking of type hints using mypy

	Using sphinx for documentation

	Ensuring the code in the documentation is correct with doctests

	Checking for insensitive language with alex

	Using Github Actions to check automatically run all checks and publish new releases

	Hosting documentation on Read The Docs

	Reference
	Contributing Bibliography

	List of contributors

Indices and tables

	Index

	Module Index

	Search Page

Tutorial: make a contribution to the documentation

In this tutorial we will make a contribution to the documentation of Nashpy.

Forking the repository

Navigate to http://github.com and create an account. If you are in education you
can apply for a specific education account here: https://education.github.com.

Navigate to the Github repository for Nashpy:
https://github.com/drvinceknight/Nashpy. This is the hub for development of the
source code. You cannot make modification to this copy of the source code so you
need to create your own copy under your Github account. You do this by creating
a fork. Do this by clicking the Fork button and following the
instructions:

[image: ../../_images/main7.png]

Cloning the repository

Once we have a fork of the repository on your Github account, create a copy
of it to your computer. This is called cloning. Do this by clicking the Code
button and copying the address of the repository to your clipboard:

[image: ../../_images/main8.png]
If you have not installed git go to https://git-scm.com and install.

Now to create a clone of the source code open your command line tool and type
the following (replace <your username> with your Github username):

$ git clone https://github.com/<your username>/Nashpy.git

This will download the source code to your computer:

$ git clone https://github.com/<your username>/Nashpy.git
Cloning into 'Nashpy'...
remote: Enumerating objects: 1813, done.
remote: Counting objects: 100% (362/362), done.
remote: Compressing objects: 100% (225/225), done.
remote: Total 1813 (delta 160), reused 233 (delta 79), pack-reused 1451
Receiving objects: 100% (1813/1813), 439.94 KiB | 2.67 MiB/s, done.
Resolving deltas: 100% (905/905), done.

Creating a branch

In order to modify the source code you must create a new branch. After cloning,
first change directory in to the Nashpy source code:

$ cd Nashpy

Now, to keep the changes you are about to make separate from the main
source code, create a branch:

$ git branch add-name-to-contributors-list

Now checkout to that branch:

$ git checkout add-name-to-contributors-list

Modifying the documentation

Using your preferred editor, open the file
Nashpy/docs/contributing/reference/contributors/index.rst. If you do not
have a preferred editor Visual Studio Code [https://code.visualstudio.com] is
recommended.

Now add you name to the file (replace <your username>
with your Github username):

List of contributors

- `@drvinceknight <https://github.com/drvinceknight>`_
- `@<your username> <https://github.com/<your username>`_

Checking the modification

To build the documentation, first create a virtual environment specifically for
purposes to work on Nashpy:

$ python -m venv env

This creates a directory env which holds a separate version of python.
To tell your command line tool to now use this version:

On Linux or macOS type:

$ source env/bin/activate

On Windows type:

$ env\Scripts\activate

Now install the Nashpy software in to this environment:

$ python -m pip install flit
$ python -m flit install --symlink

To build the documentation:

$ cd docs
$ sphinx-build -b html . _build/html
Running Sphinx v3.1.2
loading pickled environment... done
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 2 source files that are out of date
updating environment: 1 added, 2 changed, 1 removed
reading sources... [100%] contributing/tutorial/index
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] index
generating indices... genindex py-modindexdone
highlighting module code... [100%] nashpy.learning.fictitious_play
writing additional pages... searchdone
copying images... [100%] _static/contributing/tutorial/cloning/main.png
copying static files... ... done
copying extra files... done
dumping search index in English (code: en)... done
dumping object inventory... done
build succeeded.

The HTML pages are in _build/html.

You can open _build/html/index.html in a browser to see the
documentation locally which should include the changes you made.

Running the test suite

You can run the entire test suite which will check that this modification has
not caused any problems:

$ python -m pip install tox
$ python -m tox

Committing the change

Now you need to stage this file:

$ git add docs/contributing/reference/contributors/index.rst

Now commit this file:

$ git commit

This will open a text editor where you can write your commit title and message:

Add <your username> to list of contributors

I am doing the contribution tutorial.

Closing the editor will commit the changes you made.

Pushing the change to Github

Now that all that is done, you are going to send the changes back to your copy
of the source code on Github:

$ git push origin add-name-to-contributors-list

Opening a Pull Request

You now have 2 copies of the modified source code of Nashpy. One locally on your
computer, the other under your Github account. In order to include those changes
in to the main source code of Nashpy you will open a Pull request.

To do this, go to your fork of the Nashpy repository:
https://github.com/<your username>/Nashpy. You should see a
Compare and Pull Request button:

[image: ../../_images/main6.png]
Once you have clicked on that, you can review your changes and then eventually
click on Create pull request to create the Pull Request.

Making further modifications

Once a Pull Request is opened, a number of automated checks will start. This
will check the various software tests but also build a viewable version of the
documentation.

You can click on the corresponding details button to see any of these:

[image: ../../_images/main4.png]
Your modification will also be reviewed:

[image: ../../_images/main9.png]
To make any required changes, modify the files.

Then stage and commit the files:

$ git add docs/contributing/reference/contributors/index.rst
$ git commit

This will open a text editor where you can write your commit title and message
(similarly to before).

Once this is done, push the code to Github which will automatically update the
pull request:

$ git push origin add-name-to-contributors-list

This final process of making further modifications might repeat itself and
eventually the Pull Request will be merged and your changes included in the
main version of the Nashpy source code.

How to

How to:

	How to fork the repository

	How to clone the repository

	How to update from upstream

	How to create a branch

	How to create a virtual environment

	How to install the library from source

	How to run tests

	How to check for insensitive language

	How to write a docstring

	How to write a type hint

	How to write tests

	How to make a commit

	How to push changes

	How to open a pull request

How to fork the repository

	Navigate to https://github.com/drvinceknight/Nashpy

	Click on Fork

	Follow any remaining instructions, for example if you have an organisation
account on Github you will be prompted to say which account you would like to
fork with.

How to clone the repository

In order to obtain a copy of
your fork of the repository on github to your local machine
run the following at your command line:

$ git clone https://github.com/<username>/Nashpy.git

How to update from upstream

In order to bring your local repository up to date with any upstream changes:

$ git remote add upstream https://github.com/drvinceknight/Nashpy.git
$ git pull upstream main

The above:

	Creates a new remote with alias upstream that points at the main
source repository for Nashpy. You can list all your
remote repositories by running:

$ git remote -v

	Pulls the latest changes from the main branch of the upstream
repository.

How to create a branch

To create a branch with name <name-of-branch> run:

$ git branch <name-of-branch>

To go to that branch:

$ git checkout <name-of-branch>

How to branch from a specific branch, tag or commit

To create a branch with name <name-of-branch> from a specific branch,
tag or commit with name <location> run:

$ git branch <name-of-branch> <location>

How to create a branch and checkout to it at the same time

You can create a branch with name <name-of-branch> and checkout in a
single command:

$ git checkout -b <name-of-branch>

How to create a virtual environment

To create a virtual environment with name <name> run:

$ python -m venv <name>

How to activate <name>

On Linux or macOS type:

$ source env/bin/activate

On Windows type:

$ env\Scripts\activate

How to install the library from source

To install the library from the source files:

$ python -m pip install flit
$ python -m flit install

How to install an editable version of the library from source

If you want to install a version of the library from the source files so that
modifications of the source files are directly usable:

$ python -m flit install --symlink

How to run tests

To install tox:

$ python -m pip install tox

To run all tests:

$ python -m tox

If you want to run the tests across a single version of Python:

$ python -m tox -e <version>

where version is either py38 or py39.

How to check for insensitive language

The documentation is checked for insensitive or inconsiderate language using
alex [https://github.com/get-alex/alex#cli].

How to install alex

To install alex run:

$ npm install alex --global

Note that this required node, information on install node is available here:
https://www.npmjs.com/get-npm

How to run alex

To run alex on the documentation:

$ alex docs**/*.rst

To run alex on the README.md file:

$ alex README.md

How to ignore some checks

To ignore some specific checks annotations can be used. For example
John Nash is annotated to ignore insensitive related to
gendered pronouns:

.. <!--alex disable he-she-->
.. <!--alex disable her-him-->

This library is named after the mathematician John Nash. He is most famous for
his work in Game Theory that culminated in him winning a Noble prize in
Economics. The book [Nasar2011]_ (popularized in a 2001 movie) gives a good
overview of his life.

The work he received a Noble prize for was a proof that a game **always** has
an equilibrium [Nash1950]_. His proof is an exceptional piece of mathematics
where he uses a fixed point theorem by showing that an equilibrium is equivalent
to a fixed point of a function.

.. <!--alex enable he-she-->
.. <!--alex enable her-him-->

Another example is the README.md file where an annotation is added to
ignore a specific use of the word “bi”:

Usage

Create bi-matrix games by passing two 2 dimensional arrays/lists:

How to write a docstring

All functionality needs to have a documentation string (docstrings [https://www.python.org/dev/peps/pep-0257/]). The convention used in Nashpy is
to follow Numpy’s docstring convention [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard]:

def <function>(<signature>):
 """
 <short summary>

 Parameters

 <paramter> : <type>
 <description>
 <paramter> : <type>
 <description>
 ...
 <paramter> : <type>
 <description>

 Returns

 <type>
 <description>
 """

If the function/method does not return anything but is instead a generator
then Returns should be replaced with Yields.

How to check dosctrings in a module

Running tests with tox will automatically check
formatting of docstrings.

If you want to check a specific file, use darglint [https://github.com/terrencepreilly/darglint]:

$ python -m pip install darglint
$ darglint -s numpy <path_to_file>

How to write a type hint

Type hints allow to annotate code in a machine and human readable way so as to
indicate the types of each variable. The general syntax of this is:

def <function>(
 variable_1: type = default_value,
 variable_2: type,
) -> type

For example here is the annotated source code for some internal functionality:

import numpy as np
import numpy.typing as npt

def make_tableau(M: npt.NDArray) -> npt.NDArray:
 """
 Make a tableau for the given matrix M.
 This tableau corresponds to the polytope of the form:
 Mx <= 1 and x >= 0
 Parameters

 M : array
 A matrix with linear coefficients defining the polytope.
 Returns

 array
 The tableau that corresponds to the polytope.
 """
 return np.append(
 np.append(M, np.eye(M.shape[0]), axis=1),
 np.ones((M.shape[0], 1)),
 axis=1,
)

How to check type annotations in a module

Running tests with tox will automatically check
type annotations.

If you want to check a specific file, use Mypy [https://mypy.readthedocs.io/en/stable/introduction.html]:

$ python -m pip install mypy
$ python -m mypy --ignore-missing-imports <path_to_file>

How to write tests

The pytest framework is used for writing and running
tests for Nashpy.

Tests should be written in one of the following locations:

	In a preexisting file in the test/ directory.

	In a new file in the test/ directory.

Thanks to pytest the format for a test is:

def test_<functionality>():
 """
 <short summary if necessary>
 """
 <code logic>
 assert <boolean>

For guidance on how to run tests see: How to run tests.

When writing a new test it is good practice to ensure the test fails (either by
modifying the test or by modifying the source code): this ensures that
pytest is running the test in question.

Note that when adding new functionality the coverage of the test suite will be
checked using coverage. Thus, in practice multiple
tests will need to be written to test new functionality completely.

Hypothesis

Property based tests are tests that use random sampling in an efficient manner
to test given properties as opposed to specific values. Nashpy uses
hypothesis for this.

For example the following tests that for any given M, which is a 3 by 3
numpy integer array, the length of the output of
get_derivative_of_fitness is as expected:

from hypothesis import given, settings
from hypothesis.strategies import integers
from hypothesis.extra.numpy import arrays

@given(M=arrays(np.int8, (3, 3)))
def test_property_get_derivative_of_fitness(M):
 t = 0
 x = np.zeros(M.shape[1])
 derivative_of_fitness = get_derivative_of_fitness(x, t, M)

 assert len(derivative_of_fitness) == len(x)

How to make a commit

To commit changes to a given code <file.py>.

First, stage it:

$ git add <file.py>

Now that the file is staged, create a commit:

$ git commit

This will open a text editor (a default text editor of your choice can be set).
In there write a commit message in the following format:

<commit title>

<commit message>

Save and exit from the text editor and your commit should be applied.

Commit message style

The <commit title> should be short and follow the style: “If
this commit is applied it will <commit title> will happen.”

The <commit message> should include further details and can go over many
lines.

Here is some good guidance on writing commit messages:
https://chris.beams.io/posts/git-commit/

Do not use git commit -m "<commit message>"

It is possible to write a commit message directly as you make the commit by
typing:

$ git commit -m <commit title>

This is not recommended as it encourages unclear commit messages.

How to push changes

In order to push a copy of your committed changes on the <branch-name>
branch to
your fork of the repository on github
run the following at your command line:

$ git push origin <branch-name>

How to open a pull request

Once you have pushed your changes to github you can
open a request for these changes to be incorporated in to the main repository by
going to your fork of the Nashpy repository:
https://github.com/<your username>/Nashpy. You should see a
Compare and Pull Request button:

[image: ../../../_images/main6.png]
Once you have clicked on that, you can review your changes and then eventually
click on Create pull request to create the Pull Request.

Discussion

	The code structure of Nashpy

	Writing clean tests with pytest

	Testing across environments with tox

	Installing and packaging with flit

	Virtual environments

	Checking code is tested with coverage

	Testing with properties with hypothesis

	Ensuring consistent code style with Black

	Static code analysis with flake8

	Checking the presence of docstrings with interrogate

	Checking the format of docstrings with darglint

	Checking of type hints using mypy

	Using sphinx for documentation

	Ensuring the code in the documentation is correct with doctests

	Checking for insensitive language with alex

	Using Github Actions to check automatically run all checks and publish new releases

	Hosting documentation on Read The Docs

The code structure of Nashpy

The directory structure

The directory structure for Nashpy is:

├── src/
├── tests/
├── docs/
├── CHANGES.md
├── CITATION.md
├── LICENSE
├── README.md
├── paper.bib
├── paper.md
├── pyproject.toml
├── .readthedocs.yml
├── setup.cfg
└── tox.ini

Here is a brief description of each of these:

The src/ directory

The src/ directory contains the source code. It’s structure is as
follows:

src/
└── nashpy
 ├── __init__.py
 ├── game.py
 ├── algorithms/
 ├── integer_pivoting/
 ├── learning/
 └── polytope/

	The __init__.py file contains the various commands to import all the
functionality of the library.

	The game.py file contains the main nashpy.Game class.

	The algorithms/ directory contains further modules with algorithms for
computation of Nash equilibria.

	The integer_pivoting/ directory contains further modules with
algorithms for integer pivoting.

	The learning/ directory contains further modules for various learning
algorithms.

	The polytope directory contains further modules with
code for best response polytopes.

The tests/ directory

This contains all the test files.

The docs/ directory

The documentation is written using the Diataxis framework [Procida2021]. As
well as various configuration files for sphinx there
are 5 main subdirectories:

docs/
├── contributing
│ ├── discussion/
│ ├── how-to/
│ ├── index.rst
│ ├── reference/
│ └── tutorial/
├── discussion/
├── how-to/
├── index.rst
├── reference/
└── tutorial/

	The contributing/ directory contains the specific contributing
documentation. Which itself is written using Diataxis [Procida2021].

	The discussion/ directory contains source files for the discussion
described at [Procida2021] as: “explanation is discussion that clarifies and
illuminates a particular topic.”

	The reference/ directory contains source files for the reference
described at [Procida2021] as: “reference guides are technical descriptions
of the machinery and how to operate it.”

	The how-to/ directory contains source files for the how to guides
described at [Procida2021] as: “how-to guides are directions that take the
reader through the steps required to solve a real-world problem”

	The tutorial/ directory contains source files for the tutorial
described at [Procida2021] as: “tutorials are lessons that take the reader by
the hand through a series of steps to complete a project of some kind.”

The CHANGES.md file

Makes a note of different changes in versions of Nashpy.

The CITATION.md file

Contains information for citing Nashpy.

The LICENSE file

Contains the license.

The README.md file

Contains the first entry point documentation to the Nashpy project.

The paper.bib and paper.md files

These are the source files for the Journal of Open Source Software [https://joss.theoj.org] paper written about Nashpy: [Knight2018].

The pyproject.toml file

Contains all the build instructions for packaging Nashpy and is used by
flit.

The .readthedocs.yml file

This includes configuration settings for the online service that hosts the
documentation read the docs.

The setup.cfg file

Contains some configuration instructions for testing.

The tox.ini file

Contains the instructions for the test runner tox.

The Game class

The nashpy.Game class is an umbrella class that creates an object
oriented interface to all functionality of Nashpy as methods on a game.

Writing clean tests with pytest

The pytest [https://github.com/pytest-dev/pytest] framework allows for cleaner
tests to be written but also for efficient running of tests with multiple
plugins.

Plugins

Coverage: pytest-cov

The pytest-cov [https://github.com/pytest-dev/pytest-cov] plugin allows you
to run coverage checks with pytest.

Flake8: pytest-flake8

The pytest-flake8 [https://github.com/tholo/pytest-flake8] plugin allows you
to run flake8 checks with pytest.

Stochastic effects: pytest-randomly

The pytest-randomly [https://github.com/pytest-dev/pytest-randomly] plugin
does two things (for Nashpy):

	It randomly shuffles the order of tests: this ensures that tests passing is
not dependent on the order in which they run.

	It seeds stochastic tests to ensure that any exceptions are reproducible. In
practice this has little effect here as ideally stochastic tests are seeded
or written with hypothesis.

Nicer look: pytest-sugar

The pytest-sugar [https://github.com/Teemu/pytest-sugar] plugin changes the
look of pytest.

Further plugins

The Talk Python to Me podcast episode 267 featured a discussion of a number of
pytest plugins: https://talkpython.fm/episodes/show/267/15-amazing-pytest-plugins

Testing across environments with tox

The tox [https://tox.readthedocs.io/en/latest/] project allows for the
automation of many tasks related to Python packaging and testing.

For Nashpy it is used to:

	Configure all tests.

	Test across multiple python versions.

Configure all tests

All test commands are written in tox.ini. This
include things like checking style
with black and presence of docstrings with
interrogate. Running all the checks is done
with a single standard command: python -m tox.

Note that checking for insensitive language in documentation is not configured or run by tox.

Test across multiple python versions

This is done thanks to configurations written in tox.ini:

[tox]
isolated_build = True
envlist = py38, py39

Installing and packaging with flit

TODO

Virtual environments

TODO

Checking code is tested with coverage

TODO

Testing with properties with hypothesis

TODO

Ensuring consistent code style with Black

TODO

Static code analysis with flake8

TODO

Checking the presence of docstrings with interrogate

TODO

Checking the format of docstrings with darglint

Documentation strings, more commonly referred to as docstrings [https://www.python.org/dev/peps/pep-0257/] in python are strings that
directly document a function. Their presence is checked using
Checking the presence of docstrings with interrogate but the particular format they are written in is
checked using darglint [https://github.com/terrencepreilly/darglint].

Once installed darlint can be used to check one of three docstring styles:

	Google style guide [https://google.github.io/styleguide/pyguide.html]

	Sphinx style guide [https://pythonhosted.org/an_example_pypi_project/sphinx.html#function-definitions]

	Numpy style guide [https://numpydoc.readthedocs.io/en/latest/format.html]

For example, consider the file main.py:

def get_mean(collection):
 """
 Obtain the average of a collection of objects.

 Parameters

 collection : list
 A list of numbers

 Returns

 float
 The mean of the numbers.
 """
 return sum(collection) / len(collection)

After installing darglint:

$ python -m pip install darglint

If we check the format of this file against the Google style guide:

$ darglint -s google main.py
main.py:get_mean:1: DAR101: - collection
main.py:get_mean:1: DAR201: - return

we get two errors, we can cross reference the error codes DAR101 and
DAR201 at
https://github.com/terrencepreilly/darglint#error-codes.

	DAR101: “The docstring is missing a parameter in the definition.”

	DAR201: “The docstring is missing a return from definition.”

Note that our file does have both those things but here darglint is telling us
that they do not match with the google style guide.

If we check the format of this file against the Sphinx style guide:

$ darglint -s sphinx main.py
main.py:get_mean:1: DAR101: - collection
main.py:get_mean:1: DAR201: - return

we get the same two errors.

Running, the file against the Numpy style guide gives:

$ darglint -s numpy main.py
$

No errors are raised as this is indeed written using the Numpy style guide which
is also the convention chosen for the entire Nashpy source code.

Running darglint as part of the test suite

If darglint is installed it will automatically run as part of the flake8 check.
For Nashpy this is done as part of the pytest run which is all configured using
tox.

Checking of type hints using mypy

Optional type hints can be added to python code which allows specification
of the type of a variable. Type hints were specified in
PEP484 [https://www.python.org/dev/peps/pep-0484/].

Type hints are ignored when running the code but can be statically analysed
using a various tools:

	Mypy [https://mypy.readthedocs.io/en/stable/introduction.html].

	Pyright [https://github.com/Microsoft/pyright]

Mypy [https://mypy.readthedocs.io/en/stable/introduction.html] is used for
Nashpy.

For example, consider the file main.py:

def get_mean(collection):
 """
 Obtain the average of a collection of objects.

 Parameters

 collection : list
 A list of numbers

 Returns

 float
 The mean of the numbers.
 """
 return sum(collection) / len(collection)

After installing mypy:

$ python -m pip install mypy

If we check the annotations present in the file:

$ python -m mypy main.py
Success: no issues found in 1 source file

There are no issues because there are no annotations. If the following
annotations are added:

from typing import Iterable

def get_mean(collection: Iterable) -> float:
 """
 Obtain the average of a collection of objects.

 Parameters

 collection : Iterable
 A list of numbers

 Returns

 float
 The mean of the numbers.
 """
 return sum(collection) / len(collection)

We get:

$ python -m mypy main.py
main_with_wrong_types.py:17: error: Argument 1 to "len" has incompatible type "Iterable[Any]"; expected "Sized"
Found 1 error in 1 file (checked 1 source file)

Mypy has found an error here: the Iterable type does not necessarily
have a length. The following modifies this:

def get_mean(collection: list) -> float:
 """
 Obtain the average of a collection of objects.

 Parameters

 collection : list
 A list of numbers

 Returns

 float
 The mean of the numbers.
 """
 return sum(collection) / len(collection)

We get:

$ python -m mypy main.py
Success: no issues found in 1 source file

–ignore-missing-import

In some cases some imported modules cannot be used checked with Mypy, these can
be ignored by running the following:

$ python -m mypy --ignore-missing-import main.py

Overlap of functionality with darglint

The python library darglint checks the format of the
docstrings. This will also use any type annotations and so the type annotations
and the types specified in the docstrings must correspond.

Using sphinx for documentation

TODO

Using sphinx-togglebutton for the questions

TODO

Using matplotlib for plotting directives

The matplotlib library includes a sphinx plugin that allows for
plot directives.
To enable it, ensure that "matplotlib.sphinxext.plot_directive" is
included in extensions in conf.py.

For example the following will create a plot:

.. plot::

 import matplotlib.pyplot as plt
 import numpy as np

 xs = np.linspace(0, 10)
 plt.plot(xs, np.cos(xs))

(Source code, png, hires.png, pdf)

[image: ../../../_images/index-1.png]

Ensuring the code in the documentation is correct with doctests

TODO

Checking for insensitive language with alex

alex [https://github.com/get-alex/alex#cli] is a tool that allows you to identify insensitive and/or inconsiderate
language in written prose. The following description is taken from the project
page:

“Whether your own or someone else’s writing, alex helps you find gender
favoring, polarizing, race related, religion inconsiderate, or other unequal
phrasing in text.”

As an example consider the following markdown file:

A typical user of Nashpy

He will use it to study games.

If we run alex on it:

$ alex main.md

We get:

$ alex main.md
main.md
3:1-3:3 warning `He` may be insensitive, use `They`, `It` instead he-she retext-equality

⚠ 1 warning

Correcting the markdown file to:

A typical user of Nashpy

They will use it to study games.

Running alex now gives:

$ alex main.md
main.md: no issues found

The above example is quite a clear one, alex assists by identifying errors like
this but also more subtle ones.

It is possible to ignore certain checks using a configuration file [https://github.com/get-alex/alex#configuration] but as described in the
how to guide it is also possible to
annotate the file itself. This is preferred as it makes exceptions explicit.

FAQ

The Frequently asked questions about alex can be found here: https://github.com/get-alex/alex#faq
This includes:

Q: This is stupid!

A: Not a question. And yeah, alex isn’t very smart. People are much better
at this. But people make mistakes, and alex is there to help

The Nashpy library uses alex for exactly this reason, it is one of many efforts
made to ensure the project is inclusive.

Using Github Actions to check automatically run all checks and publish new releases

TODO

Hosting documentation on Read The Docs

Read the docs is a web service that builds and hosts documentation. You can read
more about the service here: https://readthedocs.org

The documentation contained in docs/ is automatically built and can be
viewed at https://nashpy.readthedocs.io/en/stable/.

Settings

Read the docs allows you to configure your build using a readthedocs.yml
file. This is not currently used by Nashpy.

The default version (ie when going to https://nashpy.readthedocs.io/) is the
stable version which means the last release.

You can view the version of the documentation currently on the main
branch by going to: https://nashpy.readthedocs.io/latest.

Configuration file

Read the docs can have specific settings set in a .readthedocs.yml file.
Details on this can be found here:
https://docs.readthedocs.io/en/stable/config-file/v2.html#packages

One specific setting used by Nashpy is:

python:
 version: 3.8
 install:
 - method: pip
 path: .

This ensures Read the docs does not look for a requirements.txt file to
install the library. Instead it runs pip install . which uses
The pyproject.toml file.

A powerful feature offered by Read the docs is that it can build documentation
in pull requests.

Building documentation in pull requests

To set this up you need to ensure the following things are done:

	The repository settings on Read the docs instruct pull requests to be built.

	The correct web hook is in place on Github.

	The correct settings of the web hook are done on the Github repository.

To instruct pull requests to be built ensure the following box is ticked in the
Advanced settings for your project on Read the docs:

[image: ../../../_images/main.png]
Setting up the web hooks correctly is described here:
https://docs.readthedocs.io/en/latest/pull-requests.html

When done correctly this is what Applications settings [https://github.com/settings/applications?o=used-desc] should look like:

[image: ../../../_images/main1.png]
The final thing to check is the setting on the specific Github repository (under
Settings/Webhooks) which
should have the following 4 boxes ticked:

	Branch or tag creation

	Branch or tag deletion

	Pull requests

	Pushes

When done correctly this should look like:

[image: ../../../_images/main2.png]
[image: ../../../_images/main3.png]
This is described here:
https://docs.readthedocs.io/en/latest/webhooks.html#github (although note that
ticking the Pull Requests box is not indicated there).

Reviewing documentation on Pull Requests

If this is all done correctly you will be able to view your documentation during
pull requests:

[image: ../../../_images/main4.png]
For example here is how the documentation looked for pull request that
added this specific page of the documentation:

[image: ../../../_images/main5.png]

Reference

	Contributing Bibliography

	List of contributors

Contributing Bibliography

This is a collection of various bibliographic items referenced in the
contributor documentation.

	Procida2021

	Daniele Procida. Diátaxis: A Systematic Framework For Technical Documentation Authoring. https://diataxis.fr

	Knight2018

	Knight and Campbell, (2018). Nashpy: A Python library for the computation of Nash equilibria. Journal of Open Source Software, 3(30), 904, https://doi.org/10.21105/joss.00904

List of contributors

	@drvinceknight [https://github.com/drvinceknight]

	@11michalis11 [https://github.com/11michalis11]

	@asinghgaba [https://github.com/asinghgaba]

	@katiemcgoldrick [https://github.com/katiemcgoldrick]

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nashpy	

 	
 	
 nashpy.algorithms.lemke_howson	

 	
 	
 nashpy.algorithms.support_enumeration	

 	
 	
 nashpy.algorithms.vertex_enumeration	

 	
 	
 nashpy.game	

 	
 	
 nashpy.learning.fictitious_play	

Index

 A
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	asymmetric_replicator_dynamics() (nashpy.game.Game method)

F

 	
 	fictitious_play() (in module nashpy.learning.fictitious_play)

 	(nashpy.game.Game method)

 	
 	fixation_probabilities() (nashpy.game.Game method)

G

 	
 	Game (class in nashpy.game)

 	
 	get_best_response_to_play_count() (in module nashpy.learning.fictitious_play)

I

 	
 	indifference_strategies() (in module nashpy.algorithms.support_enumeration)

 	
 	is_best_response() (nashpy.game.Game method)

 	is_ne() (in module nashpy.algorithms.support_enumeration)

L

 	
 	lemke_howson() (in module nashpy.algorithms.lemke_howson)

 	(nashpy.game.Game method)

 	
 	lemke_howson_enumeration() (nashpy.game.Game method)

M

 	
 	
 module

 	nashpy

 	nashpy.algorithms.lemke_howson

 	nashpy.algorithms.support_enumeration

 	nashpy.algorithms.vertex_enumeration

 	nashpy.game

 	nashpy.learning.fictitious_play

 	
 	moran_process() (nashpy.game.Game method)

N

 	
 	
 nashpy

 	module

 	
 nashpy.algorithms.lemke_howson

 	module

 	
 nashpy.algorithms.support_enumeration

 	module

 	
 	
 nashpy.algorithms.vertex_enumeration

 	module

 	
 nashpy.game

 	module

 	
 nashpy.learning.fictitious_play

 	module

O

 	
 	obey_support() (in module nashpy.algorithms.support_enumeration)

P

 	
 	potential_support_pairs() (in module nashpy.algorithms.support_enumeration)

 	
 	powerset() (in module nashpy.algorithms.support_enumeration)

R

 	
 	replicator_dynamics() (nashpy.game.Game method)

S

 	
 	shift_tableau() (in module nashpy.algorithms.lemke_howson)

 	solve_indifference() (in module nashpy.algorithms.support_enumeration)

 	
 	stochastic_fictitious_play() (nashpy.game.Game method)

 	support_enumeration() (in module nashpy.algorithms.support_enumeration)

 	(nashpy.game.Game method)

T

 	
 	tableau_to_strategy() (in module nashpy.algorithms.lemke_howson)

U

 	
 	update_play_count() (in module nashpy.learning.fictitious_play)

V

 	
 	vertex_enumeration() (in module nashpy.algorithms.vertex_enumeration)

 	(nashpy.game.Game method)

 _images/main12.png
Ay

B

Ay
O2
O1

) (3,5) . /
(4,1

By
d
(2,0)
7
ﬂ
(3,1)

_images/main13.png
Ay

O2

O1

(3,5)

(4,1)

_images/main10.png

_images/main11.png
0, \&
(1,1) (0,0)

_images/main3.png
Forks.
Repository forked.

Issues
Issue opened, edited, deleted, transferred,
pinned, unpinned, closed, reopened, assigned,
unassigned, labeled, unlabeled, milestoned,
demilestoned, locked, or unlocked.

Meta
This particular hook is deleted.

Package v2s &
Githiub Packages published or updated in a
repository.

Page builds
Pages site bullt.

Project columns
Project column created, updated, moved or
deleted.

Pull request review comments.
Pull request diff comment created, edited, or
deleted.

Pull requests
Pull request opened, closed, reopened, edited,
assigned, unassigned, review requested, review
request removed, labeled, unlabeled,
synchronized, ready for review, converted to
draft,locked, unlocked, auto merge enabled, auto
merge disabled, milestoned, or demilestoned.

Registry packages
Registry package published or updated in a
repository.

Repositories
Repository created, deleted, archived,
unarchived, publicized, privatized, edited,
renamed, o transferred.

Issue comments
Issue comment created, edited, o deleted.

Labels
Label created, edited or deleted.

Milestones
Milestone created, closed, opened, edited, or
deleted.

Packages
Github Packages published or updated in a
repository.

Project cards
Project card created, updated, or deleted.

Projects

Project created, updated, or deleted.

Pull request reviews
Pull request review submitted, edited, or
dismissed.

Pushes

Git push to a repository.

Releases.
Release created, edited, published, unpublished,
o deleted.

Repository imports
Repository import succeeded, failed, or
cancelled.

_images/main14.png
Ay

O2

O1

(3,5)

(4,1)

_images/main2.png
B drvinceknight / Nashpy

<> Code

@ Issues (18 11 Pull requests

Options
Manage access
Security & analysis
Branches
Webhooks
Notifications
Integrations
Deploy keys
Autolink references
Actions
Environments
Secrets

Pages

Moderation settings

) Discussions ® Actions [Projects 0 wiki © security

Webhooks / Manage webhook

We'll send a POST request to the URL below with details of any subscribed events. You can also specify which data format you'd like to

I Insights

3 Settings

® Unwatch ~

receive (JSON, x-wu-forn-urlencoded, etc). More information can be found in our developer documentation.

Payload URL *
https://readthedocs.org/apifv2/webhook/nashpy/7370]

Content type

application/json

Secret

SSL verification

8 By default, we verity SSL certificates when delivering payloads.

@® Enable SSL verification Disable (not recommended)

Which events would you like to trigger this webhook?
© Just the push event.
© Send me everything.

@ Let me select individual events.

@ Branch or tag creation
Branch or tag created.

© Check runs

B Check suites

@ Branch or tag deletion
Branch or tag deleted

9

V7 Star

178

% Fork

_images/main4.png
Z* . All checks have passed Hide all checks

7 successful checks

() I DUIG UDUNKU-TAeST, 5.5) (PUSN) SUCCESSIUII 11T

+ [©)) CI/build (mac0S-latest, 3.8) (pull_request) Successiulin Im Details
v © Cl/build (macOS-latest, 3.8) (push) Successful in 1m Details
+ [©)) CI/build (windows-latest, 3.8) (pull_request) Successfulin Im Details
+ © Cl/build (windows-latest, 3.8) (push) Successful in Im Details

[docsireadthedocsorg:nashpy — Rezd the Docs buid suceeeded! m

. This branch has no conflicts with the base branch
Merging can be performed automatically.

nav.xhtml

 Table of Contents

 		
 Welcome to Nashpy’s documentation!

 		
 Tutorial: building and finding the equilibrium for a game

 		
 Introduction to game theory

 		
 Installing Nashpy

 		
 Creating a game

 		
 Calculating the utility of a pair of strategies

 		
 Computing Nash equilibria

 		
 Learning in games

 		
 How to

 		
 Install Nashpy

 		
 Create a Normal Form Game

 		
 Calculate utilities

 		
 Check if a strategy is a best response

 		
 Solve with support enumeration

 		
 Solve with vertex enumeration

 		
 Solve with Lemke Howson

 		
 Use fictitious play

 		
 Use stochastic fictitious play

 		
 Use replicator dynamics

 		
 Use asymmetric replicator dynamics

 		
 Use Moran processes

 		
 Obtain fixation probabilities

 		
 Discussion

 		
 Normal Form Games

 		
 Motivating example: Coordination Game

 		
 Definition of Normal Form Game

 		
 Definition of a Zero Sum Game

 		
 Examples of other Normal Form Games

 		
 Using Nashpy

 		
 Strategies

 		
 Motivating example: Strategy for Rock Paper Scissors

 		
 Definition of a strategy in a normal form game

 		
 Definition of support of a strategy

 		
 Strategy spaces for Normal form Games

 		
 Calculation of expected utilities

 		
 Linear algebraic calculation of expected utilities

 		
 Using Nashpy

 		
 Best responses

 		
 Motivating example: Best Responses in Matching Pennies

 		
 Definition of a best response in a normal form game

 		
 Generic best responses in 2 by 2 games

 		
 General condition for a best response

 		
 Definition of Nash equilibrium

 		
 Using Nashpy

 		
 Support enumeration

 		
 Motivating example: Coordination Game

 		
 The support enumeration algorithm

 		
 Using Nashpy

 		
 Vertex enumeration

 		
 Discussion

 		
 Extensive Form Games

 		
 Motivating example: A modification of the Coordination Game

 		
 Definition of an Extensive Form Game

 		
 Imperfect information

 		
 Definition of an information set

 		
 Definition of a strategy in an extensive form game

 		
 Equivalence of Extensive and Normal Form Games

 		
 Using Nashpy

 		
 The Lemke Howson Algorithm

 		
 Discussion

 		
 Degenerate games

 		
 Fictitious play

 		
 Discussion

 		
 Stochastic fictitious play

 		
 Discussion

 		
 Replicator dynamics

 		
 Discussion

 		
 Asymmetric replicator dynamics

 		
 Discussion

 		
 Reference

 		
 John Nash

 		
 How does Nashpy relate to Gambit

 		
 Other Python Game theory libraries

 		
 Bibliography

 		
 Source files

 		
 Subpackages

 		
 Submodules

 		
 nashpy.game module

 		
 Module contents

 		
 Contributor documentation

 		
 Tutorial: make a contribution to the documentation

 		
 Forking the repository

 		
 Cloning the repository

 		
 Creating a branch

 		
 Modifying the documentation

 		
 Checking the modification

 		
 Running the test suite

 		
 Committing the change

 		
 Pushing the change to Github

 		
 Opening a Pull Request

 		
 Making further modifications

 		
 How to

 		
 How to fork the repository

 		
 How to clone the repository

 		
 How to update from upstream

 		
 How to create a branch

 		
 How to create a virtual environment

 		
 How to install the library from source

 		
 How to run tests

 		
 How to check for insensitive language

 		
 How to write a docstring

 		
 How to write a type hint

 		
 How to write tests

 		
 How to make a commit

 		
 How to push changes

 		
 How to open a pull request

 		
 Discussion

 		
 The code structure of Nashpy

 		
 Writing clean tests with pytest

 		
 Testing across environments with tox

 		
 Installing and packaging with flit

 		
 Virtual environments

 		
 Checking code is tested with coverage

 		
 Testing with properties with hypothesis

 		
 Ensuring consistent code style with Black

 		
 Static code analysis with flake8

 		
 Checking the presence of docstrings with interrogate

 		
 Checking the format of docstrings with darglint

 		
 Checking of type hints using mypy

 		
 Using sphinx for documentation

 		
 Ensuring the code in the documentation is correct with doctests

 		
 Checking for insensitive language with alex

 		
 Using Github Actions to check automatically run all checks and publish new releases

 		
 Hosting documentation on Read The Docs

 		
 Reference

 		
 Contributing Bibliography

 		
 List of contributors

 		
 Indices and tables

_images/main6.png
O Search or jump to... /| Pullrequests Issues Marketplace Explore

% 11michalis11/Nashpy

forked from drvinceknight/Nashpy

<> Code 11 Pullrequests ~ ® Actions M Projects DI Wiki @ Security |#2 Insights &3 Settings

¥ add-name-to-contributor-list had recent pushes 1 minute ago

main + § 24branches ©19tags Gotofile Addfile~
This branch is even with drvinceknight:main. 1 Contribute ~ Q3 Fetch upstream +
@ drvinceknight Add flit install to README (drvinceknight#113) 924037¢ 10 minutes ago <D 205 commits
M github/workflows Add publish to Cl. 3 days ago
M docs Start writing contribution documentation (drvinceknight#112) 22 minutes ago
M sic/nashpy Release 0.0.23 3 days ago
W tests/unit Run black. 3 days ago
gitignore Move to pyproject.toml, tox and flit. 3 days ago
CHANGES.md Release 0.0.23 3 days ago

CITATION.md Add citation.md file 5 years ago

_images/main5.png
Tutorial: building and finding the
equilibrium for a simple game

How to
Reference

Discussion

& Contributor documentation

Tutorial: making a contribution to the
documentation

How to

© Discussion
‘The code structure of Nashpy
‘Writing clean tests with pytest

Testing across environments with
tox

Installing and packaging with fit

Checking code is tested with
coverage

Testing with properties with
hypothesis

Ensuring consistent code style
with Black

Static code analysis with flake8

Checking the presence of
docstrings with interrogate

Using sphinx for documentation

Ensuring the code in the
documentation s correct with
doctests

Using Github Actions to check.
automatically run all checks and

D«

Docs » Contributor documentation » Discussion » Hosting documentation on Read The Docs

© Edit on GitHub

This page was created from a pull request (#118).

Hosting documentation on Read The Docs

Read the docs is a web service that builds and hosts documentation. You can read more about the
service here: https://readthedocs.org

The documentation contained in docs/ is automatically built and can be viewed at
https:/nashpy.readthedocs.io/en/stable/.

Settings

Read the docs allows you to configure your build using a readthedocs.ynl file. This is not currently
used by Nashpy.

The default version (ie when going to https:/nashpy.readthedocs.io/) is the steble version which
means the last release.

You can view the version of the documentation currently on the nain branch by going to:
https:/nashpy.readthedocs.io/latest.

A powerful feature offered by Read the docs is that it can build documentation in pull requests.
Building documentation in pull requests

To set this up you need to ensure the following things are done:

1. The repository settings on Read the docs instruct pull requests to be built.

2. The correct web hook is in place on Github.
3. The correct settings of the web hook are done on the Github repository.

_images/main8.png
O Search or jump to... 7

A drvinceknight / Nashpy

Pull requests Issues Marketplace Explore

®Unwatch ~ 9

<>Code (D Issues 200 I Pullrequests (1.) Discussions (Actions

[Projects

P main ~ P 29branches © 23 tags Gotofile

@ drvinceknight Delete rtd config files. (#110)
HTTPS SSH GitHub CLI

W github/workflows

https://github. con/drvinceknight/Nashp [%)

B docs Implement asynfl - Use Git or checkout with SVN using the web URL.
B srcjnashpy Release 0.0.23
1 Open with GitHub Desktop

B tests/unit Run black.
.gitignore Move to pyproje [5) Download ZIP
CHANGES.md Release 0.0.23 days ago
CITATION.md Add citation.md file 5 years ago
LICENSE Initial commit 5 years ago
README.md Move to pyproject.toml, tox and fiit. 3 days ago
paper.bib Make further editorial fixes. 3 years ago
paper.md Fix numpy doctests (#56) 2 years ago

¥ Star 178 % Fork 38
D wiki
About @

Alibrary for the computation
of Nash equilibria in two
player games

& nashpy.readthedocs.io

game python

computer-science algorithm

mathematics nash

I Readme

&8 MIT License

Releases 23

© v0.0.23 (Latest
3days ago

_images/main7.png
& drvinceknight / Nashpy Ounwateh + 9y star 178

<>Code (D lIssues 200 I Pullrequests (1) © Discussions (Actions [Projects [Wiki

¥ main ~ P 29branches © 23tags Gotofile Add file ~ - About e

Alibrary for the computation

@ drvinceknight Delete rtd config files. (#110) - + cdefbas 3daysago D203 commits of Nash equilibria in two
player games
B githubjworkflows Add publish to CI. 3days ago
& nashpy.readthedocs.io
B docs Implement asymmetric replicator dynamics (#97) 3 days ago
game python
M src/nashpy Release 0.0.23 3 days ago) G
B tests/unit Run black. 3 days ago mathematics nash
gitignore. Move to pyproject.toml, tox and flit. 3 days ago I
CHANGES.md Release 0.0.23 3 days ago @M Readme
CITATION.md Add citation.md file 5 years ago B MIT License
LICENSE Initial commit 5 years ago
README.md Move to pyproject.toml, tox and flit. 3 days ago Releases 23
paper.bib Make further editorial fixes. 3 years ago © v0.0.23 | Latest
3 days ago

paper.md Fix numpv doctests (#56) 2 vears aao

_images/main9.png
‘ @® arvinceknight requested changes & minutes ago View changes

docs/contributing/reference/contributors/index. rst

@@ -2,3 42,4 @e List of contributors

- “@drvinceknight <https://github. con/drvinceknight>'_
5+ - elimichaisll <https://github.con/llmichalisil>"_

. drvinceknight 8 minutes ago - edited ~ Owner © -

Great, thanks @11michalis11 looks like you have a small typo and (@11nichais11 should be: @limichalisil
(the U is missing).

&
@ ~o

Resolve conversation

_static/plus.png

_static/file.png

_static/minus.png

_static/contributing/discussion/readthedocs/github_settings_branches/main.png
B drvinceknight / Nashpy

<> Code

@ Issues (18 11 Pull requests

Options
Manage access
Security & analysis
Branches
Webhooks
Notifications
Integrations
Deploy keys
Autolink references
Actions
Environments
Secrets

Pages

Moderation settings

) Discussions ® Actions [Projects 0 wiki © security

Webhooks / Manage webhook

We'll send a POST request to the URL below with details of any subscribed events. You can also specify which data format you'd like to

I Insights

3 Settings

® Unwatch ~

receive (JSON, x-wu-forn-urlencoded, etc). More information can be found in our developer documentation.

Payload URL *
https://readthedocs.org/apifv2/webhook/nashpy/7370]

Content type

application/json

Secret

SSL verification

8 By default, we verity SSL certificates when delivering payloads.

@® Enable SSL verification Disable (not recommended)

Which events would you like to trigger this webhook?
© Just the push event.
© Send me everything.

@ Let me select individual events.

@ Branch or tag creation
Branch or tag created.

© Check runs

B Check suites

@ Branch or tag deletion
Branch or tag deleted

9

V7 Star

178

% Fork

_static/contributing/discussion/readthedocs/instruction/main.png
Settings
Advanced Settings

Edit Versions

Advanced Settings

—Global settings

Default version*
Domains [stable
Maintainers The version of your project that / redirects to
Redirects Default branch
Translations [main
Subprojects ‘What branch "latest" points to. Leave empty to use the default value for your
e VCS (eg. trunk ormaster).

Environment Variables
Automation Rules
Notifications

Traffic Analytics
Search Analytics

Advertising

Analytics code
@
Google Analytics Tracking ID (ex. UA-22345342-1). This may slow down your
page loads.
" Disable Analytics
Disable Google Analytics completely for this project (requires rebuilding
documentation)
Show version wamning
Show warning banner in non-stable nor latest versions.
" Single version
Asingle version site has no translations and only your “latest" version, served at

the root of the domain. Use this with caution, only turn it on if you will never
have multiple versions of your docs.

Build pull requests for this project

More information in our docs

_static/contributing/discussion/readthedocs/github_settings_PRs_and_pushes/main.png
Forks.
Repository forked.

Issues
Issue opened, edited, deleted, transferred,
pinned, unpinned, closed, reopened, assigned,
unassigned, labeled, unlabeled, milestoned,
demilestoned, locked, or unlocked.

Meta
This particular hook is deleted.

Package v2s &
Githiub Packages published or updated in a
repository.

Page builds
Pages site bullt.

Project columns
Project column created, updated, moved or
deleted.

Pull request review comments.
Pull request diff comment created, edited, or
deleted.

Pull requests
Pull request opened, closed, reopened, edited,
assigned, unassigned, review requested, review
request removed, labeled, unlabeled,
synchronized, ready for review, converted to
draft,locked, unlocked, auto merge enabled, auto
merge disabled, milestoned, or demilestoned.

Registry packages
Registry package published or updated in a
repository.

Repositories
Repository created, deleted, archived,
unarchived, publicized, privatized, edited,
renamed, o transferred.

Issue comments
Issue comment created, edited, o deleted.

Labels
Label created, edited or deleted.

Milestones
Milestone created, closed, opened, edited, or
deleted.

Packages
Github Packages published or updated in a
repository.

Project cards
Project card created, updated, or deleted.

Projects

Project created, updated, or deleted.

Pull request reviews
Pull request review submitted, edited, or
dismissed.

Pushes

Git push to a repository.

Releases.
Release created, edited, published, unpublished,
o deleted.

Repository imports
Repository import succeeded, failed, or
cancelled.

_static/contributing/discussion/readthedocs/web_hook/main.png
O Search or jump to... /| Pullrequests Issues Marketplace Explore

Vince Knight

Go to your personal profile
Your personal account @ Switch to another account v

Account settings Applications
Profile i it &
Installed GitHub Apps Authorized GitHub Apps Authorized OAuth Apps
Account
You have granted 12 applications access to your account. Sort~ | Revokeall
Appearance New

Account security

[E]) Rexd the Docs Communiy (readthedocs.org)
Last used within the last week - Owned by readthedocs

Billing & plans

_static/contributing/tutorial/before_pr/main.png
O Search or jump to... /| Pullrequests Issues Marketplace Explore

% 11michalis11/Nashpy

forked from drvinceknight/Nashpy

<> Code 11 Pullrequests ~ ® Actions M Projects DI Wiki @ Security |#2 Insights &3 Settings

¥ add-name-to-contributor-list had recent pushes 1 minute ago

main + § 24branches ©19tags Gotofile Addfile~
This branch is even with drvinceknight:main. 1 Contribute ~ Q3 Fetch upstream +
@ drvinceknight Add flit install to README (drvinceknight#113) 924037¢ 10 minutes ago <D 205 commits
M github/workflows Add publish to Cl. 3 days ago
M docs Start writing contribution documentation (drvinceknight#112) 22 minutes ago
M sic/nashpy Release 0.0.23 3 days ago
W tests/unit Run black. 3 days ago
gitignore Move to pyproject.toml, tox and flit. 3 days ago
CHANGES.md Release 0.0.23 3 days ago

CITATION.md Add citation.md file 5 years ago

_static/contributing/discussion/readthedocs/preview/main.png
Tutorial: building and finding the
equilibrium for a simple game

How to
Reference

Discussion

& Contributor documentation

Tutorial: making a contribution to the
documentation

How to

© Discussion
‘The code structure of Nashpy
‘Writing clean tests with pytest

Testing across environments with
tox

Installing and packaging with fit

Checking code is tested with
coverage

Testing with properties with
hypothesis

Ensuring consistent code style
with Black

Static code analysis with flake8

Checking the presence of
docstrings with interrogate

Using sphinx for documentation

Ensuring the code in the
documentation s correct with
doctests

Using Github Actions to check.
automatically run all checks and

D«

Docs » Contributor documentation » Discussion » Hosting documentation on Read The Docs

© Edit on GitHub

This page was created from a pull request (#118).

Hosting documentation on Read The Docs

Read the docs is a web service that builds and hosts documentation. You can read more about the
service here: https://readthedocs.org

The documentation contained in docs/ is automatically built and can be viewed at
https:/nashpy.readthedocs.io/en/stable/.

Settings

Read the docs allows you to configure your build using a readthedocs.ynl file. This is not currently
used by Nashpy.

The default version (ie when going to https:/nashpy.readthedocs.io/) is the steble version which
means the last release.

You can view the version of the documentation currently on the nain branch by going to:
https:/nashpy.readthedocs.io/latest.

A powerful feature offered by Read the docs is that it can build documentation in pull requests.
Building documentation in pull requests

To set this up you need to ensure the following things are done:

1. The repository settings on Read the docs instruct pull requests to be built.

2. The correct web hook is in place on Github.
3. The correct settings of the web hook are done on the Github repository.

_static/contributing/tutorial/forking/main.png
& drvinceknight / Nashpy Ounwateh + 9y star 178

<>Code (D lIssues 200 I Pullrequests (1) © Discussions (Actions [Projects [Wiki

¥ main ~ P 29branches © 23tags Gotofile Add file ~ - About e

Alibrary for the computation

@ drvinceknight Delete rtd config files. (#110) - + cdefbas 3daysago D203 commits of Nash equilibria in two
player games
B githubjworkflows Add publish to CI. 3days ago
& nashpy.readthedocs.io
B docs Implement asymmetric replicator dynamics (#97) 3 days ago
game python
M src/nashpy Release 0.0.23 3 days ago) G
B tests/unit Run black. 3 days ago mathematics nash
gitignore. Move to pyproject.toml, tox and flit. 3 days ago I
CHANGES.md Release 0.0.23 3 days ago @M Readme
CITATION.md Add citation.md file 5 years ago B MIT License
LICENSE Initial commit 5 years ago
README.md Move to pyproject.toml, tox and flit. 3 days ago Releases 23
paper.bib Make further editorial fixes. 3 years ago © v0.0.23 | Latest
3 days ago

paper.md Fix numpv doctests (#56) 2 vears aao

_static/contributing/tutorial/review/main.png
‘ @® arvinceknight requested changes & minutes ago View changes

docs/contributing/reference/contributors/index. rst

@@ -2,3 42,4 @e List of contributors

- “@drvinceknight <https://github. con/drvinceknight>'_
5+ - elimichaisll <https://github.con/llmichalisil>"_

. drvinceknight 8 minutes ago - edited ~ Owner © -

Great, thanks @11michalis11 looks like you have a small typo and (@11nichais11 should be: @limichalisil
(the U is missing).

&
@ ~o

Resolve conversation

_static/contributing/tutorial/ci/main.png
Z* . All checks have passed Hide all checks

7 successful checks

() I DUIG UDUNKU-TAeST, 5.5) (PUSN) SUCCESSIUII 11T

+ [©)) CI/build (mac0S-latest, 3.8) (pull_request) Successiulin Im Details
v © Cl/build (macOS-latest, 3.8) (push) Successful in 1m Details
+ [©)) CI/build (windows-latest, 3.8) (pull_request) Successfulin Im Details
+ © Cl/build (windows-latest, 3.8) (push) Successful in Im Details

[docsireadthedocsorg:nashpy — Rezd the Docs buid suceeeded! m

. This branch has no conflicts with the base branch
Merging can be performed automatically.

_static/contributing/tutorial/cloning/main.png
O Search or jump to... 7

A drvinceknight / Nashpy

Pull requests Issues Marketplace Explore

®Unwatch ~ 9

<>Code (D Issues 200 I Pullrequests (1.) Discussions (Actions

[Projects

P main ~ P 29branches © 23 tags Gotofile

@ drvinceknight Delete rtd config files. (#110)
HTTPS SSH GitHub CLI

W github/workflows

https://github. con/drvinceknight/Nashp [%)

B docs Implement asynfl - Use Git or checkout with SVN using the web URL.
B srcjnashpy Release 0.0.23
1 Open with GitHub Desktop

B tests/unit Run black.
.gitignore Move to pyproje [5) Download ZIP
CHANGES.md Release 0.0.23 days ago
CITATION.md Add citation.md file 5 years ago
LICENSE Initial commit 5 years ago
README.md Move to pyproject.toml, tox and fiit. 3 days ago
paper.bib Make further editorial fixes. 3 years ago
paper.md Fix numpy doctests (#56) 2 years ago

¥ Star 178 % Fork 38
D wiki
About @

Alibrary for the computation
of Nash equilibria in two
player games

& nashpy.readthedocs.io

game python

computer-science algorithm

mathematics nash

I Readme

&8 MIT License

Releases 23

© v0.0.23 (Latest
3days ago

_static/discussion/extensive-form-game-incoherent-example-with-imperfect-information/main.png
Ay

O2

O1

(3,5)

(4,1)

_static/discussion/extensive-form-game-example-with-imperfect-information/main.png
Ay

O2

O1

(3,5)

(4,1)

_static/discussion/extensive-form-game-example-with-perfect-information/main.png
Ay

B

Ay
O2
O1

) (3,5) . /
(4,1

By
d
(2,0)
7
ﬂ
(3,1)

_static/discussion/extensive-form-games/main.png

_static/discussion/extensive-form-games-with-imperfect-information/main.png
0, \&
(1,1) (0,0)

_images/main1.png
O Search or jump to... /| Pullrequests Issues Marketplace Explore

Vince Knight

Go to your personal profile
Your personal account @ Switch to another account v

Account settings Applications
Profile i it &
Installed GitHub Apps Authorized GitHub Apps Authorized OAuth Apps
Account
You have granted 12 applications access to your account. Sort~ | Revokeall
Appearance New

Account security

[E]) Rexd the Docs Communiy (readthedocs.org)
Last used within the last week - Owned by readthedocs

Billing & plans

_images/index-1.png
100

075

050

025

000

025

050

075

-100

o

_images/main.png
Settings
Advanced Settings

Edit Versions

Advanced Settings

—Global settings

Default version*
Domains [stable
Maintainers The version of your project that / redirects to
Redirects Default branch
Translations [main
Subprojects ‘What branch "latest" points to. Leave empty to use the default value for your
e VCS (eg. trunk ormaster).

Environment Variables
Automation Rules
Notifications

Traffic Analytics
Search Analytics

Advertising

Analytics code
@
Google Analytics Tracking ID (ex. UA-22345342-1). This may slow down your
page loads.
" Disable Analytics
Disable Google Analytics completely for this project (requires rebuilding
documentation)
Show version wamning
Show warning banner in non-stable nor latest versions.
" Single version
Asingle version site has no translations and only your “latest" version, served at

the root of the domain. Use this with caution, only turn it on if you will never
have multiple versions of your docs.

Build pull requests for this project

More information in our docs

_images/best-responses-1.png
utility to row player

100
075
00
025
— woln
000

— woln
025
050

075

-100

0o 02 06 08 10

y.1-y)

_images/best-responses-2.png
utility to column player

100

075

050

025

— (@8

ooo — (@B

025

050

075

-100

0o 02 06 08 10

x1-x

