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Welcome to Nashpy’s documentation!

This is a Python library used for the computation of equilibria in 2 player
strategic form games.

This is a library with simple dependencies (it only requires numpy and
scipy) so that it is pip installable: if you want to do sophisticated
equilibria computation you should use
gambit [https://github.com/gambitproject/gambit]
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Tutorial: building and finding the equilibrium for  a simple game


Introduction to game theory

Game theory is the study of strategic interactions between rational agents.
Simply put that means that it’s the study of interactions when the involved
parties try and do what is best from their point of view.

As an example let us consider Rock Paper Scissors [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors]. This is a
common game where two players choose one of 3 options (in game theory we call
these strategies):


	Rock

	Paper

	Scissors



The winner is decided according to the following:


	Rock crushers scissors

	Paper covers Rock

	Scissors cuts paper



We can represent this mathematically using a 3 by 3 matrix:


\[\begin{split}A =
\begin{pmatrix}
     0 & -1 &  1\\
     1 &  0 & -1\\
    -1 &  1 &  0
\end{pmatrix}\end{split}\]

The matrix \(A_{ij}\) shows the utility to the player controlling the rows
when they play the \(i\) th row and their opponent (the column player) plays
the \(j\) th column. For example, if the row player played Scissors (the 3rd
strategy) and the column player played Paper (the 2nd strategy) then the row
player gets: \(A_{32}=1\) because Scissors cuts Paper.

A recommend text book on Game Theory is [Maschler2013].




Installing Nashpy

We are going to study this game using Nashpy, first though we need to install
it. Nasphy requires the following things to be on your computer:


	Python 3.5 or greater;

	Scipy 0.19.0 or greater;

	Numpy 1.12.1 or greater.



Assuming you have those installed, to install Nashpy:


	On Mac OSX or linux open a terminal;

	On Windows open the Command prompt or similar



and type:

$ pip install nashpy





If this does not work, you might not have Python or one of the other
dependencies. You might also have problems due to pip not being
recognised. To overcome these, using the Anaconda [https://www.continuum.io/downloads] distribution of Python
is recommended as it installs straightforwardly on all operating systems and
also includes the libraries needed to run Nashpy.




Creating a game

We can create this game using Nashpy:

>>> import nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> rps = nash.Game(A)
>>> rps
Zero sum game with payoff matrices:

Row player:
[[ 0 -1  1]
 [ 1  0 -1]
 [-1  1  0]]

Column player:
[[ 0  1 -1]
 [-1  0  1]
 [ 1 -1  0]]





The string representation of the game also contains some information. For
example, it is also showing the matrix that corresponds to the utility of the
column player. In this case that is just \(-A\) but that does not always
have to be the case.

We can in fact pass a pair of matrices to the game class to create the same
game:

>>> B = - A
>>> rps = nash.Game(A, B)
>>> rps
Zero sum game with payoff matrices:

Row player:
[[ 0 -1  1]
 [ 1  0 -1]
 [-1  1  0]]

Column player:
[[ 0  1 -1]
 [-1  0  1]
 [ 1 -1  0]]





We get the exact same game, if passed a single game, Nashpy will assume
that the game is a zero sum game: in other words the utilities of both players
are opposite.




Calculating the utility of a pair of strategies

If the row player played Scissors (the 3rd
strategy) and the column player played Paper (the 2nd strategy) then the row
player gets: \(A_{32}=1\) because Scissors cuts Paper.

A mathematical approach to representing a strategy is to consider a vector of
the size: the number of strategies. For example \(\sigma_r=(0, 0, 1)\) is
the row strategy where the row player always plays their third strategy.
Similarly \(\sigma_c=(0, 1, 0)\) is the strategy for the column player where
they always play their second strategy.

When we represent strategies like this we can get the utility to the row player
using the following linear algebraic expression:


\[\sigma_r A \sigma_c^T\]

Similarly, if \(B\) is the utility to the column player their utility is
given by:


\[\sigma_r B \sigma_c^T\]

We can use Nashpy to find these utilities:

>>> sigma_r = [0, 0, 1]
>>> sigma_c = [0, 1, 0]
>>> rps[sigma_r, sigma_c]
array([ 1, -1])





Players can of course choose to play randomly, in which case the utility
corresponds to the long term average. This is where our representation of
strategies and utility calculations becomes particularly useful. For example,
let us assume the column player decides to play Rock and Paper “randomly”. This
corresponds to \(\sigma_c=(1/2, 1/2, 0)\):

>>> sigma_c = [1 / 2, 1 / 2, 0]
>>> rps[sigma_r, sigma_c]
array([ 0.,  0.])





The row player might then decide to change their strategy and “randomly” play
Paper and Scissors:

>>> sigma_r = [0, 1 / 2, 1 / 2]
>>> rps[sigma_r, sigma_c]
array([ 0.25, -0.25])





The column player would then probably deviate once more. Whether or not their is
a pair of strategies for both players at which they both no longer have a reason
to move is going to be answered in the next section.




Computing Nash equilibria

Nash equilibria is (in two player games) a pair of strategies at which both
players do not have an incentive to deviate. We can find these using
Nashpy:

>>> eqs = rps.support_enumeration()
>>> list(eqs)
[(array([ 0.333...,  0.333...,  0.333...]), array([ 0.333...,  0.333...,  0.333...]))]





Nash equilibria is an important concept as it allows to gain an initial
understanding of emergent behaviour in complex systems.
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How to

How to:



	Install Nashpy

	Create a game

	Calculate utilities

	Solve with support enumeration

	Solve with vertex enumeration

	Solve with Lemke Howson
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Install Nashpy

Nashpy currently requires Python 3.5 or above. To install from the
Python Package index (PyPi) run the following command:

$ pip install nashpy





To install a development version from source:

$ git clone https://github.com/drvinceknight/Nashpy.git
$ cd nashpy
$ python setup.py develop
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Create a game

A game in Nashpy is created by passing 1 or 2 matrices to the
nash.Game class. Here is the zero sum game matching pennies [https://en.wikipedia.org/wiki/Matching_pennies]:

>>> import nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> matching_pennies
Zero sum game with payoff matrices:

Row player:
[[ 1 -1]
 [-1  1]]

Column player:
[[-1  1]
 [ 1 -1]]





Here is the non zero sum game prisoners
dilemma [https://en.wikipedia.org/wiki/Prisoner%27s_dilemma]:

>>> import nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)
>>> prisoners_dilemma
Bi matrix game with payoff matrices:

Row player:
[[3 0]
 [5 1]]

Column player:
[[3 5]
 [0 1]]
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Calculate utilities

A game can be passed a pair of mixed strategies (distributions over the set of
pure strategies) to return the utilities. Let us create a game to illustrate
this:

>>> import nash
>>> import numpy as np
>>> A = np.array([[3, 0], [5, 1]])
>>> B = np.array([[3, 5], [0, 1]])
>>> prisoners_dilemma = nash.Game(A, B)





The utility for both players when they both play their first strategy:

>>> sigma_r = np.array([1, 0])
>>> sigma_c = np.array([1, 0])
>>> prisoners_dilemma[sigma_r, sigma_c]
array([3, 3])





The utility to both players when they play uniformly randomly across both their
strategies:

>>> sigma_r = np.array([1 / 2, 1 / 2])
>>> sigma_c = np.array([1 / 2, 1 / 2])
>>> prisoners_dilemma[sigma_r, sigma_c]
array([ 2.25,  2.25])
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Solve with support enumeration

One of the algorithms implemented in Nashpy is called
Support enumeration, this is implemented as a method on the Game
class:

>>> import nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)





This support_enumeration method returns a generator of all the
equilibria:

>>> equilibria = matching_pennies.support_enumeration()
>>> for eq in equilibria:
...     print(eq)
(array([ 0.5,  0.5]), array([ 0.5,  0.5]))
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Solve with vertex enumeration

One of the algorithms implemented in Nashpy is called
Vertex enumeration, this is implemented as a method on the Game
class:

>>> import nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)





This vertex_enumeration method returns a generator of all the
equilibria:

>>> equilibria = matching_pennies.vertex_enumeration()
>>> for eq in equilibria:
...     print(eq)
(array([ 0.5,  0.5]), array([ 0.5,  0.5]))









          

      

      

    


    
         Copyright 2017, Vincent Knight.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Nashpy 0.0.10 documentation 

          	How to 
 
      

    


    
      
          
            
  
Solve with Lemke Howson

One of the algorithms implemented in Nashpy is The Lemke Howson Algorithm. This
algorithm does not return all equilibria and takes an input argument:

>>> import nash
>>> import numpy as np
>>> A = np.array([[1, -1], [-1, 1]])
>>> matching_pennies = nash.Game(A)
>>> matching_pennies.lemke_howson(initial_dropped_label=0)
(array([ 0.5,  0.5]), array([ 0.5,  0.5]))





The initial_dropped_label is an integer between 0 and
sum(A.shape) - 1. To iterate over all possible labels use the
lemke_howson_enumeration which returns a generator:

>>> equilibria = matching_pennies.lemke_howson_enumeration()
>>> for eq in equilibria:
...     print(eq)
(array([ 0.5,  0.5]), array([ 0.5,  0.5]))
(array([ 0.5,  0.5]), array([ 0.5,  0.5]))
(array([ 0.5,  0.5]), array([ 0.5,  0.5]))
(array([ 0.5,  0.5]), array([ 0.5,  0.5]))





Note that this algorithm is not guaranteed to find all equilibria but is
an efficient way of finding an equilibrium.
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Support enumeration

The support enumeration algorithm implemented in Nashpy is based on the
one described in [Nisan2007].

The algorithm is as follows:

For a nondegenerate 2 player game \((A, B)\in{\mathbb{R}^{m\times n}}^2\)
the following algorithm returns all nash equilibria:


	For all \(1\leq k\leq \min(m, n)\);



	For all pairs of support \((I, J)\) with \(|I|=|J|=k\)



	Solve the following equations (this ensures we have best responses):


\[    \sum_{i\in I}{\sigma_{r}}_iB_{ij}=v\text{ for all }j\in J\]\[\sum_{j\in J}A_{ij}{\sigma_{c}}_j=u\text{ for all }i\in I\]



	Solve


	\(\sum_{i=1}^{m}{\sigma_{r}}_i=1\) and \({\sigma_{r}}_i\geq 0\)
for all \(i\)

	\(\sum_{j=1}^{n}{\sigma_{c}}_i=1\) and \({\sigma_{c}}_j\geq 0\)
for all \(j\)





	Check the best response condition.





Repeat steps 3,4 and 5 for all potential support pairs.


Discussion


	Step 1 is a complete enumeration of all possible strategies that the
equilibria could be.

	Step 2 is based on the definition of a non degenerate game which ensures that
equilibria will be on supports of the same size.

	Step 3 are the linear equations that are to be solved, for a given pair of
supports these ensure that neither player has an incentive to move to another
strategy on that support.

	Step 4 is to ensure we have mixed strategies.

	Step 5 is a final check that there is no better utility outside of the
supports.



In Nashpy this is all implemented algebraically using Numpy to
solve the linear equations.
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Vertex enumeration

The vertex enumeration algorithm implemented in Nashpy is based on the
one described in [Nisan2007].

The algorithm is as follows:

For a nondegenerate 2 player game \((A, B)\in{\mathbb{R}^{m\times n}}^2\)
the following algorithm returns all nash equilibria:


	Obtain the best response Polytopes \(P\) and \(Q\).

	For all pairs of vertices of \(P\) and \(Q\).

	Check if the pair is fully labeled and return the normalised probability
vectors.



Repeat steps 2 and 3 for all pairs of vertices.


Discussion


	Before creating the best response Polytope we need to consider the best
response Polyhedron. For the row player, this corresponds to the set of all
the mixed strategies available to the row player as well as an upper bound on
the utilities to the column player. Analogously for the column player:


\[\bar P = \{(x, v) \in \mathbb{R}^m \times \mathbb{R}\;|\; x\geq 0,
                                                   \mathbb{1}x=1,
                                                   B^Tx\leq\mathbb{1}v\}\]\[\bar Q = \{(y, u) \in \mathbb{R}^n \times \mathbb{R}\;|\; y\geq 0,
                                                   \mathbb{1}y=1,
                                                   Ay\leq\mathbb{1}u\}\]

Note that in both definitions above we have a total of \(m + n\)
inequalities in the constraints.

For \(P\), the first \(m\) of those
constraints correspond to the elements of \(x\) being greater or equal to
0. For a given \(x\), if \(x_i=0\), we say that \(x\) has label
:math`i`. This corresponds to strategy \(i\) not being in the support of
\(x\).

For the last \(n\) of these inequalities, when they are equalities they
correspond to whether or not strategy \(1\leq j \leq n\) of the other
player is a best response to \(x\). Similarly, if strategy \(j\) is a
best response to \(x\) then we say that \(x\) has label \(m +
j\).

This all holds analogously for the column player. If the labels of a pair of
elements of \(\bar P\) and \(\bar Q\) give the full set of integers
from \(1\) to \(m + n\) then they represent strategies that are best
responses to each other. Since, this would imply that either a pure stragey
is not played or it is a best response to the other players strategy.

The difficulty with using the best response Polyhedron is that the upper
bound on the utilities of both players (\(u, v\)) is not known.
Importantly, we do not need to know it. Thus, we assume that in both cases:
\(u=v=1\) (this simply corresponds to a scaling of our strategy vectors).

This allows us to define the best response Polytopes:


\[P = \{(x, v) \in \mathbb{R}^m \times \mathbb{R}\;|\; x\geq 0,
                                              B^Tx\leq 1\}\]\[Q = \{(y, u) \in \mathbb{R}^n \times \mathbb{R}\;|\; y\geq 0,
                                                   Ay\leq 1\}\]



	Step 2: The vertices of these polytopes are the points that will have labels
(they are the points that lie at the intersection of the underlying
halfspaces [Ziegler2012]).

To find these vertices, nashpy uses scipy which has a handy
class for creating Polytopes using the inequality definitions and being able
to return the vertices. Here is the wrapper written in nashpy that is
used by the vertex enumeration algorithm to give the vertices and
corresponding labels:

>>> import nash
>>> import numpy as np
>>> A = np.array([[3, 1], [1, 3]])
>>> halfspaces = nash.polytope.build_halfspaces(A)
>>> vertices = nash.polytope.non_trivial_vertices(halfspaces)
>>> for vertex in vertices:
...     print(vertex)
(array([ 0.333...,  0...]), {0, 3})
(array([ 0...,  0.333...]), {1, 2})
(array([ 0.25,  0.25]), {0, 1})







	Step 3, we iterate over all pairs of the vertices of both polytopes and pick
out the ones that are fully labeled. Because of the scaling that took place
to create the Polytope from the Polyhedron, we will need to return a
normalisation of both vertices.
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The Lemke Howson Algorithm

The Lemke Howson algorithm implemented in Nashpy is based on the
one described in [Nisan2007] originally introduced in [Lemke1964].

The algorithm is as follows:

For a nondegenerate 2 player game \((A, B)\in{\mathbb{R}^{m\times n}}^2\)
the following algorithm returns a single Nash equilibria:


	Obtain the best response Polytopes \(P\) and \(Q\).

	Choose a starting label to drop, this will correspond to a vertex of
\(P\) or \(Q\).

	In that polytope, remove the label from the corresponding vertex and move to
the vertex that shared that label. A new label will be picked up and
duplicated in the other polytope.

	In the other polytope drop the duplicate label and move to the vertex that
shared that label.



Repeat steps 3 and 4 until there are no duplicate labels.


Discussion

This algorithm is implemented using integer pivoting.


	Step 1, the best response polytopes \(P\) and \(Q\) are represented
by a tableau. For example for:


\[\begin{split}A =
\begin{pmatrix}
    3 & 1\\
    1 & 3
\end{pmatrix}\end{split}\]


\[\begin{split}B =
\begin{pmatrix}
    1 & 3\\
    2 & 1
\end{pmatrix}\end{split}\]

This is represented as a pair of tableau:


\[\begin{split}T_c =
\begin{pmatrix}
    3 & 1 & 1 & 0 & 1\\
    1 & 3 & 0 & 1 & 1
\end{pmatrix}\end{split}\]

For reasons that will become clear, we infact shift this tableau so
that the labelling is coherent across both polytopes:


\[\begin{split}T_c =
\begin{pmatrix}
    1 & 0 & 3 & 1 & 1\\
    0 & 1 & 1 & 3 & 1
\end{pmatrix}\end{split}\]

Here it is as a numpy array:

>>> import numpy as np
>>> col_tableau = np.array([[1, 0, 3, 1, 1],
...                         [0, 1, 1, 3, 1]])





Here is the tableau that corresponds to \(B\):


\[\begin{split}T_r =
\begin{pmatrix}
    1 & 2 & 1 & 0 & 1\\
    3 & 1 & 0 & 1 & 1
\end{pmatrix}\end{split}\]

Here it is as a numpy array:

>>> row_tableau = np.array([[1, 2, 1, 0, 1],
...                         [3, 1, 0, 1, 1]])







	Step 2, choosing a starting label is choosing an integer from \(0 \leq k
< m + n\) (we start our indices at 0). As an example, let us choose the label
\(1\).

First we need to identify which vertex has that label. The labels of a
tableau correspond to the non basic variables: these are the columns with
more than just a single non zero variable:


	The labels of \(T_c\) are thus \(\{2, 3\}\):

>>> import nash
>>> nash.integer_pivoting.non_basic_variables(col_tableau)
{2, 3}







	The labels of \(T_r\) are thus \(\{0, 1\}\):

>>> nash.integer_pivoting.non_basic_variables(row_tableau)
{0, 1}









So we are going to drop label :math:`1` from :math:`T_r`.



	Step 3, removing a label and moving from one vertex to another corresponds
to integer pivoting [Dantzig2016]. This is a manipulation of \(T\),
dropping label \(1\) corresponds to pivoting the second column.

To do this we need to identify which row will not change (the “pivot row”),
this is done by finding the smallest ratio of value in that column over the
value in the last column: \((T_{r})_{i4}/(T_{r})_{ik}\).

In our case the first row has corresponding ratio: \(1/2\) and the second
ratio \(1/1\). So our pivot row is the first row:

>>> nash.integer_pivoting.find_pivot_row(row_tableau, column_index=1)
0





What we now do is row operations so as to make the second column correspond
to a basic variable. We will do this by multiplying the second row by 2 and
then subtracting the first row by it:


\[\begin{split}T_r =
\begin{pmatrix}
    1  & 2 & 1 & 0 & 1\\
    5 & 0 & -1 & 2 & 1
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 2\}\) so it has “picked up”
label \(2\):

>>> nash.integer_pivoting.pivot_tableau(row_tableau, column_index=1)
{2}
>>> row_tableau
array([[ 1,  2,  1,  0,  1],
       [ 5,  0, -1,  2,  1]])







	Step 4, we will now repeat the previous manipulation on \(T_c\) where we
now need to drop the duplicate label \(2\). We do this by pivoting the
third column.

The ratios are: \(1/3\) for the first row and \(1/1\) for the
second, thus the pivot row is the first row:

>>> nash.integer_pivoting.find_pivot_row(col_tableau, column_index=2)
0





Using similar row operations we obtain:


\[\begin{split}T_c =
\begin{pmatrix}
     1 & 0 & 3 & 1 & 1\\
    -1 & 3 & 0 & 8 & 2
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 3\}\), so it has picked up
label \(0\):

>>> nash.integer_pivoting.pivot_tableau(col_tableau, column_index=2)
{0}
>>> col_tableau
array([[ 1,  0,  3,  1,  1],
       [-1,  3,  0,  8,  2]])





We now need to drop \(0\) from \(T_r\), we do this by pivoting the
first column. The ratio test: \(1/1 > 1/5\) implies that the second row
is the pivot row. Using similar algebraic manipulations we obtain:


\[\begin{split}T_r =
\begin{pmatrix}
    0 & 10 & 6 & -2 & 4\\
    5 & 0 & -1 & 2 & 1
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{2, 3\}\), so it has picked up
label \(3\):

>>> nash.integer_pivoting.pivot_tableau(row_tableau, column_index=0)
{3}
>>> row_tableau
array([[ 0, 10,  6, -2,  4],
       [ 5,  0, -1,  2,  1]])





We now need to drop \(3\) from \(T_c\), we do this by pivoting the
fourth column. The ratio test: \(1/1>2/8\) indicates that we pivot on the
second row which gives:


\[\begin{split}T_c =
\begin{pmatrix}
     9 & -1& 24 & 0 & 6\\
    -1 &  3& 0  & 8 & 2
\end{pmatrix}\end{split}\]

Our resulting tableau has labels: \(\{0, 1\}\):

>>> nash.integer_pivoting.pivot_tableau(col_tableau, column_index=3)
{1}
>>> col_tableau
array([[ 9, -3, 24,  0,  6],
       [-1,  3,  0,  8,  2]])





The union of the labels of \(T_r\) and \(T_c\) is: \(\{0, 1, 2,
3\}\) which implies that we have a fully labeled vertx pair.

The vertex corresponding to \(T_r\) are obtained by setting the non basic
variables to 0 and looking at the corresponding values of the first two
columns:


\[v_r = (1/5, 4/10) = (1/5, 2/5)\]

The vertex corresponding to \(T_c\) are obtained from the last 2 columns:


\[v_c = (6/24, 2/8) = (1/4, 1/4)\]





The final step of the algorithm is to return the normalised probabilities that
correspond to these vertices:


\[\{(1/3, 2/3), (1/2, 1/2)\}\]
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Source files


Subpackages



	nash.algorithms package
	Submodules

	nash.algorithms.support_enumeration module

	nash.algorithms.vertex_enumeration module

	nash.algorithms.lemke_howson module












Submodules




nash.game module

A class for a normal form game


	
class nash.game.Game(*args)[source]

	Bases: object

A class for a normal form game.





	Parameters:	
	A, B (-) – non zero sum games.

	A (-) – zero sum game.










	
lemke_howson(initial_dropped_label)[source]

	Obtain the Nash equilibria using the Lemke Howson algorithm implemented
using integer pivoting.

Algorithm implemented here is Algorithm 3.6 of [Nisan2007].


	Start at the artificial equilibrium (which is fully labeled)

	Choose an initial label to drop and move in the polytope for which
the vertex has that label to the edge
that does not share that label. (This is implemented using integer
pivoting)

	A label will now be duplicated in the other polytope, drop it in a
similar way.

	Repeat steps 2 and 3 until have Nash Equilibrium.







	Parameters:	initial_dropped_label (int) – 


	Returns:	equilibria


	Return type:	A tuple.










	
lemke_howson_enumeration()[source]

	Obtain Nash equilibria for all possible starting dropped labels
using the lemke howson algorithm. See Game.lemke_howson for more
information.

Note: this is not guaranteed to find all equilibria.





	Returns:	equilibria


	Return type:	A generator










	
support_enumeration()[source]

	Obtain the Nash equilibria using support enumeration.

Algorithm implemented here is Algorithm 3.4 of [Nisan2007].


	For each k in 1...min(size of strategy sets)

	For each I,J supports of size k

	Solve indifference conditions

	Check that have Nash Equilibrium.







	Returns:	equilibria


	Return type:	A generator.










	
vertex_enumeration()[source]

	Obtain the Nash equilibria using enumeration of the vertices of the best
response polytopes.

Algorithm implemented here is Algorithm 3.5 of [Nisan2007].


	Build best responses polytopes of both players

	For each vertex pair of both polytopes

	Check if pair is fully labelled

	Return the normalised pair







	Returns:	equilibria


	Return type:	A generator.
















Module contents







          

      

      

    


    
         Copyright 2017, Vincent Knight.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Nashpy 0.0.10 documentation 

          	Reference 

          	Source files 
 
      

    


    
      
          
            
  
nash.algorithms package


Submodules




nash.algorithms.support_enumeration module

A class for a normal form game


	
nash.algorithms.support_enumeration.indifference_strategies(A, B)[source]

	A generator for the strategies corresponding to the potential supports





	Returns:	
	A generator of all potential strategies that are indifferent on each

	potential support. Return False if they are not valid (not a

	probability vector OR not fully on the given support).














	
nash.algorithms.support_enumeration.is_ne(strategy_pair, support_pair, payoff_matrices)[source]

	Test if a given strategy pair is a pair of best responses





	Parameters:	
	strategy_pair (a 2-tuple of numpy arrays) – 

	support_pair (a 2-tuple of numpy arrays) – 














	
nash.algorithms.support_enumeration.obey_support(strategy, support)[source]

	Test if a strategy obeys its support





	Parameters:	
	strategy (a numpy array) – A given strategy vector

	support (a numpy array) – A strategy support






	Returns:	
	A boolean (whether or not that strategy does indeed have the given)

	support
















	
nash.algorithms.support_enumeration.potential_support_pairs(A, B)[source]

	A generator for the potential support pairs





	Returns:	


	Return type:	A generator of all potential support pairs










	
nash.algorithms.support_enumeration.powerset(n)[source]

	A power set of range(n)

Based on recipe from python itertools documentation:

https://docs.python.org/2/library/itertools.html#recipes






	
nash.algorithms.support_enumeration.solve_indifference(A, rows=None, columns=None)[source]

	Solve the indifference for a payoff matrix assuming support for the
strategies given by columns

Finds vector of probabilities that makes player indifferent between
rows.  (So finds probability vector for corresponding column player)





	Parameters:	
	A (a 2 dimensional numpy array (A payoff matrix for the row player)) – 

	rows (the support played by the row player) – 

	columns (the support player by the column player) – 






	Returns:	
	A numpy array

	A probability vector for the column player that makes the row

	player indifferent. Will return False if all entries are not >= 0.
















	
nash.algorithms.support_enumeration.support_enumeration(A, B)[source]

	Obtain the Nash equilibria using support enumeration.

Algorithm implemented here is Algorithm 3.4 of [Nisan2007]


	For each k in 1...min(size of strategy sets)

	For each I,J supports of size k

	Solve indifference conditions

	Check that have Nash Equilibrium.







	Returns:	equilibria


	Return type:	A generator.












nash.algorithms.vertex_enumeration module

A class for the vertex enumeration algorithm


	
nash.algorithms.vertex_enumeration.vertex_enumeration(A, B)[source]

	Obtain the Nash equilibria using enumeration of the vertices of the best
response polytopes.

Algorithm implemented here is Algorithm 3.5 of [Nisan2007]


	Build best responses polytopes of both players

	For each vertex pair of both polytopes

	Check if pair is fully labelled

	Return the normalised pair







	Returns:	equilibria


	Return type:	A generator.












nash.algorithms.lemke_howson module

A class for the Lemke Howson algorithm


	
nash.algorithms.lemke_howson.lemke_howson(A, B, initial_dropped_label=0)[source]

	Obtain the Nash equilibria using the Lemke Howson algorithm implemented
using integer pivoting.

Algorithm implemented here is Algorithm 3.6 of [Nisan2007].


	Start at the artificial equilibrium (which is fully labeled)

	Choose an initial label to drop and move in the polytope for which
the vertex has that label to the edge
that does not share that label. (This is implemented using integer
pivoting)

	A label will now be duplicated in the other polytope, drop it in a
similar way.

	Repeat steps 2 and 3 until have Nash Equilibrium.







	Parameters:	initial_dropped_label (int) – 


	Returns:	equilibria


	Return type:	A tuple.










	
nash.algorithms.lemke_howson.shift_tableau(tableau, shape)[source]

	Shift a tableau to ensure labels of pairs of tableaux coincide





	Parameters:	
	tableau (a numpy array) – 

	shape (a tuple) – 






	Returns:	tableau




	Return type:	a numpy array












	
nash.algorithms.lemke_howson.tableau_to_strategy(tableau, basic_labels, strategy_labels)[source]

	Return a strategy vector from a tableau





	Parameters:	
	tableau (a numpy array) – 

	basic_labels (a set) – 

	strategy_labels (a set) – 






	Returns:	strategy




	Return type:	a numpy array
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Discussion



	John Nash

	How does Nashpy relate to Gambit

	Other Python Game theory libraries
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John Nash

This library is named after the mathematician John Nash. He is most famous for
his work in Game Theory that culminated in him winning a Noble prize in
Economics. The book [Nasar2011] (popularized in a 2001 movie) gives a good
overview of his life.

The work he received a Noble prize for was a proof that a game always has
an equilibrium [Nash1950]. His proof is an exceptional piece of mathematics
where he uses a fixed point theorem by showing that an equilibrium is equivalent
to a fixed point of a function.

Subsequently, these equilibria have been referred to as Nash equilibria.
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How does Nashpy relate to Gambit

Gambit [http://www.gambit-project.org/] is the state of the art software
library for Game Theory [McKelvey2016]. It also has a Python interface. It
handles \(N\geq2\) player games and is computationally efficient. It is a
much more mature piece of software than Nashpy.

It does however sometimes prove difficult to install (because of the
required C libraries), in particular installation is not supported on Windows.
In those instances you can use Game Theory Explorer [http://gte.csc.liv.ac.uk/index/] which is a great web point and click
Graphical User Interface (GUI) to Gambit.

The main mission statement of Nashpy is to provide a simple to install
Python library that implements algorithms that are simple to implement using the
scientific Python stack (numpy and scipy).

This is motivated by the fact that I [http://vknight.org/] wanted a Python
library (not a GUI as I am keen to teach reproducibly research methodologies)
for teaching my Mathematics students. Using the Gambit Python interface is not
sufficient for this as students need to be able to install it on their own
machines (without difficulty).

All the algorithms in Nashpy are implemented with readability as the
main motivation. This at times comes at an efficiency cost. For example,
Support enumeration builds the entire Polytope representation (using
functionality of scipy) which is not efficient.

To summarise:


	If you want to do sophisticated efficient game theoretic computations, use
Gambit [http://www.gambit-project.org/].

	If you are happy to use a GUI use Game Theory Explorer [http://gte.csc.liv.ac.uk/index/].

	If you would like an easy to install Python library for two player games you
can use Nashpy.
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Other Python Game theory libraries


	Axelrod [http://axelrod.readthedocs.io/en/stable/]: a research library
aimed at the study of the Iterated Prisoners dilemma [Knight2016].

	Gambit [http://www.gambit-project.org/]: a C library with a Python
interface for the computation of equilibria [McKelvey2016].
How does Nashpy relate to Gambit.
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  Source code for nash.algorithms.support_enumeration

"""A class for a normal form game"""
import numpy as np
from itertools import chain, combinations


[docs]def powerset(n):
    """
    A power set of range(n)

    Based on recipe from python itertools documentation:

    https://docs.python.org/2/library/itertools.html#recipes
    """
    return chain.from_iterable(combinations(range(n), r) for r in range(n + 1))



[docs]def solve_indifference(A, rows=None, columns=None):
    """
    Solve the indifference for a payoff matrix assuming support for the
    strategies given by columns

    Finds vector of probabilities that makes player indifferent between
    rows.  (So finds probability vector for corresponding column player)

    Parameters
    ----------

        A: a 2 dimensional numpy array (A payoff matrix for the row player)
        rows: the support played by the row player
        columns: the support player by the column player

    Returns
    -------

        A numpy array:
        A probability vector for the column player that makes the row
        player indifferent. Will return False if all entries are not >= 0.
    """
    # Ensure differences between pairs of pure strategies are the same
    M = (A[np.array(rows)] - np.roll(A[np.array(rows)], 1, axis=0))[:-1]

    # Columns that must be played with prob 0
    zero_columns = set(range(A.shape[1])) - set(columns)

    if zero_columns != set():
        M = np.append(M, [[int(i == j) for i, col in enumerate(M.T)]
                          for j in zero_columns], axis=0)

    # Ensure have probability vector
    M = np.append(M, np.ones((1, M.shape[1])), axis=0)
    b = np.append(np.zeros(len(M) - 1), [1])

    try:
        prob = np.linalg.solve(M, b)
        if all(prob >= 0):
            return prob
        return False
    except np.linalg.linalg.LinAlgError:
        return False


[docs]def potential_support_pairs(A, B):
    """
    A generator for the potential support pairs

    Returns
    -------

        A generator of all potential support pairs
    """
    p1_num_strategies, p2_num_strategies = A.shape
    for support1 in (s for s in powerset(p1_num_strategies) if len(s) > 0):
        for support2 in (s for s in powerset(p2_num_strategies)
                         if len(s) == len(support1)):
            yield support1, support2


[docs]def indifference_strategies(A, B):
    """
    A generator for the strategies corresponding to the potential supports

    Returns
    -------

        A generator of all potential strategies that are indifferent on each
        potential support. Return False if they are not valid (not a
        probability vector OR not fully on the given support).
    """
    for pair in potential_support_pairs(A, B):
        s1 = solve_indifference(B.T, *(pair[::-1]))
        s2 = solve_indifference(A, *pair)

        if obey_support(s1, pair[0]) and obey_support(s2, pair[1]):
            yield s1, s2, pair[0], pair[1]


[docs]def obey_support(strategy, support):
    """
    Test if a strategy obeys its support

    Parameters
    ----------

        strategy: a numpy array
            A given strategy vector
        support: a numpy array
            A strategy support

    Returns
    -------

        A boolean: whether or not that strategy does indeed have the given
        support
    """
    if strategy is False:
        return False
    if not all((i in support and value > 0) or
               (i not in support and value <= 0)
               for i, value in enumerate(strategy)):
        return False
    return True


[docs]def is_ne(strategy_pair, support_pair, payoff_matrices):
    """
    Test if a given strategy pair is a pair of best responses

    Parameters
    ----------

        strategy_pair: a 2-tuple of numpy arrays
        support_pair: a 2-tuple of numpy arrays
    """
    A, B = payoff_matrices
    # Payoff against opponents strategies:
    u = strategy_pair[1].reshape(strategy_pair[1].size, 1)
    row_payoffs = np.dot(A, u)

    v = strategy_pair[0].reshape(strategy_pair[0].size, 1)
    column_payoffs = np.dot(B.T, v)

    # Pure payoffs on current support:
    row_support_payoffs = row_payoffs[np.array(support_pair[0])]
    column_support_payoffs = column_payoffs[np.array(support_pair[1])]

    return (row_payoffs.max() == row_support_payoffs.max() and
            column_payoffs.max() == column_support_payoffs.max())


[docs]def support_enumeration(A, B):
    """
    Obtain the Nash equilibria using support enumeration.

    Algorithm implemented here is Algorithm 3.4 of [Nisan2007]_

    1. For each k in 1...min(size of strategy sets)
    2. For each I,J supports of size k
    3. Solve indifference conditions
    4. Check that have Nash Equilibrium.

    Returns
    -------

        equilibria: A generator.
    """
    return ((s1, s2)
            for s1, s2, sup1, sup2 in indifference_strategies(A, B)
            if is_ne((s1, s2), (sup1, sup2), (A, B)))
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  Source code for nash.algorithms.lemke_howson

"""A class for the Lemke Howson algorithm"""
from nash.integer_pivoting import (make_tableau, non_basic_variables,
                                   pivot_tableau)

import numpy as np
from itertools import cycle


[docs]def shift_tableau(tableau, shape):
    """
    Shift a tableau to ensure labels of pairs of tableaux coincide

    Parameters
    ----------

        tableau: a numpy array
        shape: a tuple

    Returns
    -------

        tableau: a numpy array
    """
    return np.append(np.roll(tableau[:,:-1], shape[0], axis=1),
                     np.ones((shape[0], 1)), axis=1)


[docs]def tableau_to_strategy(tableau, basic_labels, strategy_labels):
    """
    Return a strategy vector from a tableau

    Parameters
    ----------

        tableau: a numpy array
        basic_labels: a set
        strategy_labels: a set

    Returns
    -------

        strategy: a numpy array
    """
    vertex = []
    for column in strategy_labels:
        if column in basic_labels:
            for i, row in enumerate(tableau[:, column]):
                if row != 0:
                    vertex.append(tableau[i, -1] / row)
        else:
            vertex.append(0)
    strategy = np.array(vertex)
    return strategy / sum(strategy)


[docs]def lemke_howson(A, B, initial_dropped_label=0):
    """
    Obtain the Nash equilibria using the Lemke Howson algorithm implemented
    using integer pivoting.

    Algorithm implemented here is Algorithm 3.6 of [Nisan2007]_.

    1. Start at the artificial equilibrium (which is fully labeled)
    2. Choose an initial label to drop and move in the polytope for which
       the vertex has that label to the edge
       that does not share that label. (This is implemented using integer
       pivoting)
    3. A label will now be duplicated in the other polytope, drop it in a
       similar way.
    4. Repeat steps 2 and 3 until have Nash Equilibrium.

    Parameters
    ----------

        initial_dropped_label: int

    Returns
    -------

        equilibria: A tuple.
    """

    if np.min(A) <= 0:
        A = A + abs(np.min(A)) + 1
    if np.min(B) <= 0:
        B = B + abs(np.min(B)) + 1

    # build tableaux
    col_tableau = make_tableau(A)
    col_tableau = shift_tableau(col_tableau, A.shape)
    row_tableau = make_tableau(B.transpose())
    full_labels = set(range(sum(A.shape)))

    if initial_dropped_label in non_basic_variables(row_tableau):
        tableux = cycle((row_tableau, col_tableau))
    else:
        tableux = cycle((col_tableau, row_tableau))

    # First pivot (to drop a label)
    entering_label = pivot_tableau(next(tableux), initial_dropped_label)
    while non_basic_variables(row_tableau).union(non_basic_variables(col_tableau)) != full_labels:
        entering_label = pivot_tableau(next(tableux), next(iter(entering_label)))

    row_strategy = tableau_to_strategy(row_tableau, non_basic_variables(col_tableau),
                                       range(A.shape[0]))
    col_strategy = tableau_to_strategy(col_tableau, non_basic_variables(row_tableau),
                                       range(A.shape[0], sum(A.shape)))

    return row_strategy, col_strategy
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  All modules for which code is available


		nash.algorithms.lemke_howson


		nash.algorithms.support_enumeration


		nash.algorithms.vertex_enumeration


		nash.game
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  Source code for nash.game

"""A class for a normal form game"""
import numpy as np
from .algorithms.lemke_howson import lemke_howson
from .algorithms.support_enumeration import support_enumeration
from .algorithms.vertex_enumeration import vertex_enumeration
from itertools import combinations


[docs]class Game:
    """
    A class for a normal form game.

    Parameters
    ----------

        - A, B: 2 dimensional list/arrays representing the payoff matrices for
          non zero sum games.
        - A: 2 dimensional list/array representing the payoff matrix for a
          zero sum game.
    """
    def __init__(self, *args):
        if len(args) == 2:
            self.payoff_matrices = tuple([np.asarray(m) for m in args])
        if len(args) == 1:
            self.payoff_matrices = np.asarray(args[0]), -np.asarray(args[0])
        self.zero_sum = np.array_equal(self.payoff_matrices[0],
                                       -self.payoff_matrices[1])

    def __repr__(self):
        if self.zero_sum:
            tpe = "Zero sum"
        else:
            tpe = "Bi matrix"
        return """{} game with payoff matrices:

Row player:
{}

Column player:
{}""".format(tpe, *self.payoff_matrices)

    def __getitem__(self, key):
        row_strategy, column_strategy = key
        return np.array([np.dot(row_strategy, np.dot(m, column_strategy))
                         for m in self.payoff_matrices])

[docs]    def vertex_enumeration(self):
        """
        Obtain the Nash equilibria using enumeration of the vertices of the best
        response polytopes.

        Algorithm implemented here is Algorithm 3.5 of [Nisan2007]_.

        1. Build best responses polytopes of both players
        2. For each vertex pair of both polytopes
        3. Check if pair is fully labelled
        4. Return the normalised pair

        Returns
        -------

            equilibria: A generator.
        """
        return vertex_enumeration(*self.payoff_matrices)


[docs]    def support_enumeration(self):
        """
        Obtain the Nash equilibria using support enumeration.

        Algorithm implemented here is Algorithm 3.4 of [Nisan2007]_.

        1. For each k in 1...min(size of strategy sets)
        2. For each I,J supports of size k
        3. Solve indifference conditions
        4. Check that have Nash Equilibrium.

        Returns
        -------

            equilibria: A generator.
        """
        return support_enumeration(*self.payoff_matrices)


[docs]    def lemke_howson_enumeration(self):
        """
        Obtain Nash equilibria for all possible starting dropped labels
        using the lemke howson algorithm. See `Game.lemke_howson` for more
        information.

        Note: this is not guaranteed to find all equilibria.

        Returns
        -------

            equilibria: A generator
        """
        for label in range(sum(self.payoff_matrices[0].shape)):
            yield self.lemke_howson(initial_dropped_label=label)


[docs]    def lemke_howson(self, initial_dropped_label):
        """
        Obtain the Nash equilibria using the Lemke Howson algorithm implemented
        using integer pivoting.

        Algorithm implemented here is Algorithm 3.6 of [Nisan2007]_.

        1. Start at the artificial equilibrium (which is fully labeled)
        2. Choose an initial label to drop and move in the polytope for which
           the vertex has that label to the edge
           that does not share that label. (This is implemented using integer
           pivoting)
        3. A label will now be duplicated in the other polytope, drop it in a
           similar way.
        4. Repeat steps 2 and 3 until have Nash Equilibrium.

        Parameters
        ----------

            initial_dropped_label: int

        Returns
        -------

            equilibria: A tuple.
        """
        return lemke_howson(*self.payoff_matrices,
                            initial_dropped_label=initial_dropped_label)
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  Source code for nash.algorithms.vertex_enumeration

"""A class for the vertex enumeration algorithm"""
from nash.polytope import build_halfspaces, non_trivial_vertices

import numpy as np
from itertools import product

[docs]def vertex_enumeration(A, B):
    """
    Obtain the Nash equilibria using enumeration of the vertices of the best
    response polytopes.

    Algorithm implemented here is Algorithm 3.5 of [Nisan2007]_

    1. Build best responses polytopes of both players
    2. For each vertex pair of both polytopes
    3. Check if pair is fully labelled
    4. Return the normalised pair

    Returns
    -------

        equilibria: A generator.
    """

    if np.min(A) < 0:
        A = A + abs(np.min(A))
    if np.min(B) < 0:
        B = B + abs(np.min(B))

    number_of_row_strategies, row_dimension = A.shape
    max_label = number_of_row_strategies + row_dimension
    full_labels = set(range(max_label))

    row_halfspaces = build_halfspaces(B.transpose())
    col_halfspaces = build_halfspaces(A)

    for row_v, row_l in non_trivial_vertices(row_halfspaces):
        adjusted_row_l = set((label + number_of_row_strategies) % (max_label)
                             for label in row_l)

        for col_v, col_l in non_trivial_vertices(col_halfspaces):
            if adjusted_row_l.union(col_l) == full_labels:
                yield row_v / sum(row_v), col_v / sum(col_v)
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